Skip to main content
Log in

Holographic phases of Rényi entropies

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We consider Rényi entropies \( {S_n}=\frac{1}{1-n } \log\;\mathrm{Tr}{\rho^n} \) of conformal field theories in flat space, with the entangling surface being a sphere. The AdS/CFT correspondence relates this Rényi entropy to that of a black hole with hyperbolic horizon; as the Rényi parameter n increases the temperature of the black hole decreases. If the CFT possesses a sufficiently low dimension scalar operator the black hole will be unstable to the development of hair. Thus, as n is varied, the Rényi entropies will exhibit a phase transition at a critical value of n. The location of the phase transition, along with the spectrum of the reduced density matrix ρ, depends on the dimension of the lowest dimension non-trivial scalar operator in the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. 0406 (2004) P06002 [hep-th/0405152] [INSPIRE].

    MATH  Google Scholar 

  2. P. Calabrese and J.L. Cardy, Entanglement entropy and conformal field theory, J. Phys. A 42 (2009) 504005 [arXiv:0905.4013] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  3. S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. S. Ryu and T. Takayanagi, Aspects of Holographic Entanglement Entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. T. Nishioka, S. Ryu and T. Takayanagi, Holographic Entanglement Entropy: An Overview, J. Phys. A 42 (2009) 504008 [arXiv:0905.0932] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  6. M. Levin and X.-G. Wen, Detecting Topological Order in a Ground State Wave Function, Physical Review Letters 96 (2006) 110405 [cond-mat/0510613].

    Article  ADS  Google Scholar 

  7. A. Kitaev and J. Preskill, Topological entanglement entropy, Phys. Rev. Lett. 96 (2006) 110404 [hep-th/0510092] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  8. H. Li and F.D.M. Haldane, Entanglement Spectrum as a Generalization of Entanglement Entropy: Identification of Topological Order in Non-Abelian Fractional Quantum Hall Effect States, Phys. Rev. Lett. 101 (2008) 010504 [arXiv:0805.0332].

    Article  ADS  Google Scholar 

  9. A. Rényi, On measures of information and entropy, in proceedings of The fourth Berkeley Symposium on Mathematics, Statistics and Probability 1 (1961) 547.

  10. K. Zyczkowski, Renyi extrapolation of Shannon entropy, Open Syst. Inf. Dyn. 10 (2003) 297 [quant-ph/0305062].

    Article  MathSciNet  MATH  Google Scholar 

  11. M.B. Hastings, I. González, A.B. Kallin and R.G. Melko, Measuring Renyi Entanglement Entropy in Quantum Monte Carlo Simulations, Phys. Rev. Lett. 104 (2010) 157201 [arXiv:1001.2335].

    Article  ADS  Google Scholar 

  12. P. Calabrese and A. Lefevre, Entanglement spectrum in one-dimensional systems, Phys. Rev. A 78 (2008) 032329 [arXiv:0806.3059].

    Article  ADS  Google Scholar 

  13. J.-M. Stéphan, G. Misguich and V. Pasquier, Phase transition in the Rényi-Shannon entropy of Luttinger liquids, Phys. Rev. B 84 (2011) 195128 [arXiv:1104.2544].

    Article  ADS  Google Scholar 

  14. I.R. Klebanov, S.S. Pufu, S. Sachdev and B.R. Safdi, Renyi Entropies for Free Field Theories, JHEP 04 (2012) 074 [arXiv:1111.6290] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  15. M. Headrick, Entanglement Renyi entropies in holographic theories, Phys. Rev. D 82 (2010) 126010 [arXiv:1006.0047] [INSPIRE].

    ADS  Google Scholar 

  16. T. Faulkner, The Entanglement Renyi Entropies of Disjoint Intervals in AdS/CFT, arXiv:1303.7221 [INSPIRE].

  17. A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, JHEP 08 (2013) 090 [arXiv:1304.4926] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. D. Fursaev, Entanglement Renyi Entropies in Conformal Field Theories and Holography, JHEP 05 (2012) 080 [arXiv:1201.1702] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. L.-Y. Hung, R.C. Myers, M. Smolkin and A. Yale, Holographic Calculations of Renyi Entropy, JHEP 12 (2011) 047 [arXiv:1110.1084] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  21. D.A. Galante and R.C. Myers, Holographic Renyi entropies at finite coupling, JHEP 08 (2013) 063 [arXiv:1305.7191] [INSPIRE].

    Article  ADS  Google Scholar 

  22. O.J. Dias, R. Monteiro, H.S. Reall and J.E. Santos, A scalar field condensation instability of rotating anti-de Sitter black holes, JHEP 11 (2010) 036 [arXiv:1007.3745] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a Holographic Superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].

    Article  ADS  Google Scholar 

  24. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic Superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. S.S. Gubser, Colorful horizons with charge in anti-de Sitter space, Phys. Rev. Lett. 101 (2008) 191601 [arXiv:0803.3483] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  26. M.A. Metlitski, C.A. Fuertes and S. Sachdev, Entanglement entropy in the O(N) model, Phys. Rev. B 80 (2009) 115122 [arXiv:0904.4477].

    Article  ADS  Google Scholar 

  27. S. Sachdev, private communication.

  28. I. Klebanov and A. Polyakov, AdS dual of the critical O(N) vector model, Phys. Lett. B 550 (2002) 213 [hep-th/0210114] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. D.N. Kabat and M. Strassler, A comment on entropy and area, Phys. Lett. B 329 (1994) 46 [hep-th/9401125] [INSPIRE].

    Article  ADS  Google Scholar 

  30. A. Belin, L.-Y. Hung, A. Maloney, S. Matsuura, R.C. Myers and T. Sierens, Holographic Charged Rényi Entropies, to appear.

  31. A. Belin, A. Maloney and S. Shenker, Instability of the topological black hole, to appear.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunji Matsuura.

Additional information

ArXiv ePrint: 1306.2640

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belin, A., Maloney, A. & Matsuura, S. Holographic phases of Rényi entropies. J. High Energ. Phys. 2013, 50 (2013). https://doi.org/10.1007/JHEP12(2013)050

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP12(2013)050

Keywords

Navigation