Skip to main content
Log in

β-supergravity: a ten-dimensional theory with non-geometric fluxes, and its geometric framework

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We present a ten-dimensional theory, named β-supergravity, that contains non-geometric fluxes and could uplift some four-dimensional gauged supergravities. Building on earlier work, we study here its NSNS sector, where Q- and R-fluxes are precisely identified. Interestingly, the Q-flux is captured in an analogue of the Levi-Civita spin connection, giving rise to a second curvature scalar. We reproduce the ten-dimensional Lagrangian using the Generalized Geometry formalism; this provides us with enlightening interpretations of the new structures. Then, we derive the equations of motion of our theory, and finally discuss further aspects: the dimensional reduction to four dimensions and comparison to gauged supergravities, the obtention of ten-dimensional purely NSNS solutions, the extensions to other sectors and new objects, the supergravity limit, and eventually the symmetries, in particular the β gauge transformation. We also introduce the related notion of a generalized cotangent bundle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Shelton, W. Taylor and B. Wecht, Nongeometric flux compactifications, JHEP 10 (2005) 085 [hep-th/0508133] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  2. A. Dabholkar and C. Hull, Duality twists, orbifolds and fluxes, JHEP 09 (2003) 054 [hep-th/0210209] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  3. A. Dabholkar and C. Hull, Generalised T-duality and non-geometric backgrounds, JHEP 05 (2006) 009 [hep-th/0512005] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  4. S. Hellerman, J. McGreevy and B. Williams, Geometric constructions of nongeometric string theories, JHEP 01 (2004) 024 [hep-th/0208174] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. A. Flournoy, B. Wecht and B. Williams, Constructing nongeometric vacua in string theory, Nucl. Phys. B 706 (2005) 127 [hep-th/0404217] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. B. Wecht, Lectures on nongeometric flux compactifications, Class. Quant. Grav. 24 (2007) S773 [arXiv:0708.3984] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. D. Andriot, M. Larfors, D. Lüst and P. Patalong, A ten-dimensional action for non-geometric fluxes, JHEP 09 (2011) 134 [arXiv:1106.4015] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. D. Andriot, Non-geometric fluxes versus (non)-geometry, arXiv:1303.0251 [INSPIRE].

  9. J. Shelton, W. Taylor and B. Wecht, Generalized flux vacua, JHEP 02 (2007) 095 [hep-th/0607015] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  10. A. Micu, E. Palti and G. Tasinato, Towards Minkowski vacua in type II string compactifications, JHEP 03 (2007) 104 [hep-th/0701173] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  11. E. Palti, Low energy supersymmetry from non-geometry, JHEP 10 (2007) 011 [arXiv:0707.1595] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  12. B. de Carlos, A. Guarino and J.M. Moreno, Complete classification of Minkowski vacua in generalised flux models, JHEP 02 (2010) 076 [arXiv:0911.2876] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  13. U. Danielsson and G. Dibitetto, On the distribution of stable de Sitter vacua, JHEP 03 (2013) 018 [arXiv:1212.4984] [INSPIRE].

    Article  ADS  Google Scholar 

  14. J. Blabäck, U. Danielsson and G. Dibitetto, Fully stable dS vacua from generalised fluxes, JHEP 08 (2013) 054 [arXiv:1301.7073] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. C. Damian, L.R. Diaz-Barron, O. Loaiza-Brito and M. Sabido, Slow-roll inflation in non-geometric flux compactification, JHEP 06 (2013) 109 [arXiv:1302.0529] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. C. Damian and O. Loaiza-Brito, More stable dS vacua from S-dual non-geometric fluxes, Phys. Rev. D 88 (2013) 046008 [arXiv:1304.0792] [INSPIRE].

    ADS  Google Scholar 

  17. F. Catino, C.A. Scrucca and P. Smyth, Simple metastable de Sitter vacua in N = 2 gauged supergravity, JHEP 04 (2013) 056 [arXiv:1302.1754] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. D. Andriot, O. Hohm, M. Larfors, D. Lüst and P. Patalong, A geometric action for non-geometric fluxes, Phys. Rev. Lett. 108 (2012) 261602 [arXiv:1202.3060] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  19. D. Andriot, O. Hohm, M. Larfors, D. Lüst and P. Patalong, Non-geometric fluxes in supergravity and double field theory, Fortsch. Phys. 60 (2012) 1150 [arXiv:1204.1979] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. P. Grange and S. Schäfer-Nameki, T-duality with H-flux: non-commutativity, T-folds and G × G structure, Nucl. Phys. B 770 (2007) 123 [hep-th/0609084] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. P. Grange and S. Schäfer-Nameki, Towards mirror symmetry à la SYZ for generalized Calabi-Yau manifolds, JHEP 10 (2007) 052 [arXiv:0708.2392] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  22. M. Graña, R. Minasian, M. Petrini and D. Waldram, T-duality, generalized geometry and non-geometric backgrounds, JHEP 04 (2009) 075 [arXiv:0807.4527] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  23. A. Coimbra, C. Strickland-Constable and D. Waldram, Supergravity as generalised geometry I: type II theories, JHEP 11 (2011) 091 [arXiv:1107.1733] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. R. Blumenhagen, A. Deser, E. Plauschinn and F. Rennecke, A bi-invariant Einstein-Hilbert action for the non-geometric string, Phys. Lett. B 720 (2013) 215 [arXiv:1210.1591] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. R. Blumenhagen, A. Deser, E. Plauschinn and F. Rennecke, Non-geometric strings, symplectic gravity and differential geometry of Lie algebroids, JHEP 02 (2013) 122 [arXiv:1211.0030] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. R. Blumenhagen, A. Deser, E. Plauschinn, F. Rennecke and C. Schmid, The intriguing structure of non-geometric frames in string theory, arXiv:1304.2784 [INSPIRE].

  27. G. Aldazabal, W. Baron, D. Marqués and C. Núñez, The effective action of double field theory, JHEP 11 (2011) 052 [Erratum ibid. 11 (2011) 109] [arXiv:1109.0290] [INSPIRE].

  28. C. Hull and B. Zwiebach, Double field theory, JHEP 09 (2009) 099 [arXiv:0904.4664] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  29. C. Hull and B. Zwiebach, The gauge algebra of double field theory and Courant brackets, JHEP 09 (2009) 090 [arXiv:0908.1792] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  30. O. Hohm, C. Hull and B. Zwiebach, Background independent action for double field theory, JHEP 07 (2010) 016 [arXiv:1003.5027] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. O. Hohm, C. Hull and B. Zwiebach, Generalized metric formulation of double field theory, JHEP 08 (2010) 008 [arXiv:1006.4823] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. D. Geissbühler, D. Marqués, C. Núñez and V. Penas, Exploring double field theory, JHEP 06 (2013) 101 [arXiv:1304.1472] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. D. Andriot and A. Betz, work in progress.

  34. O. Hohm and S.K. Kwak, N = 1 supersymmetric double field theory, JHEP 03 (2012) 080 [arXiv:1111.7293] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. F. Hassler and D. Lüst, Non-commutative/non-associative IIA (IIB) Q- and R-branes and their intersections, JHEP 07 (2013) 048 [arXiv:1303.1413] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. N. Hitchin, Generalized Calabi-Yau manifolds, Quart. J. Math. Oxford Ser. 54 (2003) 281 [math/0209099] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  37. M. Gualtieri, Generalized complex geometry, Ph.D. thesis, Advisor: N. Hitchin, Oxford University, Oxford U.K. (2003) [math.DG/0401221] [INSPIRE].

  38. P. Koerber, Lectures on generalized complex geometry for physicists, Fortsch. Phys. 59 (2011) 169 [arXiv:1006.1536] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. G. Aldazabal, D. Marqués and C. Núñez, Double field theory: a pedagogical review, Class. Quant. Grav. 30 (2013) 163001 [arXiv:1305.1907] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. D.S. Berman and D.C. Thompson, Duality symmetric string and M-theory, arXiv:1306.2643 [INSPIRE].

  41. I. Jeon, K. Lee and J.-H. Park, Differential geometry with a projection: application to double field theory, JHEP 04 (2011) 014 [arXiv:1011.1324] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. I. Jeon, K. Lee and J.-H. Park, Stringy differential geometry, beyond Riemann, Phys. Rev. D 84 (2011) 044022 [arXiv:1105.6294] [INSPIRE].

    ADS  Google Scholar 

  43. O. Hohm and S.K. Kwak, Frame-like geometry of double field theory, J. Phys. A 44 (2011) 085404 [arXiv:1011.4101] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  44. W. Siegel, Two vierbein formalism for string inspired axionic gravity, Phys. Rev. D 47 (1993) 5453 [hep-th/9302036] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  45. W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev. D 48 (1993) 2826 [hep-th/9305073] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  46. O. Hohm and B. Zwiebach, On the Riemann tensor in double field theory, JHEP 05 (2012) 126 [arXiv:1112.5296] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. O. Hohm and B. Zwiebach, Towards an invariant geometry of double field theory, J. Math. Phys. 54 (2013) 032303 [arXiv:1212.1736] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. D.S. Berman, C.D.A. Blair, E. Malek and M.J. Perry, The O D,D geometry of string theory, arXiv:1303.6727 [INSPIRE].

  49. M. Garcia-Fernandez, Torsion-free generalized connections and heterotic supergravity, arXiv:1304.4294 [INSPIRE].

  50. N.J. Hitchin, Lectures on special Lagrangian submanifolds, math.DG/9907034 [INSPIRE].

  51. C. Hull, A geometry for non-geometric string backgrounds, JHEP 10 (2005) 065 [hep-th/0406102] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  52. O. Hohm and B. Zwiebach, Large gauge transformations in double field theory, JHEP 02 (2013) 075 [arXiv:1207.4198] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. J.-H. Park, Comments on double field theory and diffeomorphisms, JHEP 06 (2013) 098 [arXiv:1304.5946] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. I. Vaisman, On the geometry of double field theory, J. Math. Phys. 53 (2012) 033509 [arXiv:1203.0836] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. I. Vaisman, Towards a double field theory on para-Hermitian manifolds, arXiv:1209.0152 [INSPIRE].

  56. I. Vaisman, Geometry on big-tangent manifolds, arXiv:1303.0658 [INSPIRE].

  57. I. Jeon, K. Lee and J.-H. Park, Supersymmetric double field theory: stringy reformulation of supergravity, Phys. Rev. D 85 (2012) 081501 [Erratum ibid. D 86 (2012) 089903] [arXiv:1112.0069] [INSPIRE].

  58. I. Jeon, K. Lee and J.-H. Park, Ramond-Ramond cohomology and O(D, D) T-duality, JHEP 09 (2012) 079 [arXiv:1206.3478] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  59. I. Jeon, K. Lee, J.-H. Park and Y. Suh, Stringy unification of type IIA and IIB supergravities under N = 2 D = 10 supersymmetric double field theory, Phys. Lett. B 723 (2013) 245 [arXiv:1210.5078] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. R. Blumenhagen, A. Deser, E. Plauschinn and F. Rennecke, Bianchi identities for non-geometric fluxesfrom quasi-Poisson structures to Courant algebroids, Fortsch. Phys. 60 (2012) 1217 [arXiv:1205.1522] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  61. D. Andriot, Heterotic string from a higher dimensional perspective, Nucl. Phys. B 855 (2012) 222 [arXiv:1102.1434] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. D. Andriot, E. Goi, R. Minasian and M. Petrini, Supersymmetry breaking branes on solvmanifolds and de Sitter vacua in string theory, JHEP 05 (2011) 028 [arXiv:1003.3774] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. M.P. Hertzberg, S. Kachru, W. Taylor and M. Tegmark, Inflationary constraints on type IIA string theory, JHEP 12 (2007) 095 [arXiv:0711.2512] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  64. G. Aldazabal, P.G. Camara, A. Font and L. Ibáñez, More dual fluxes and moduli fixing, JHEP 05 (2006) 070 [hep-th/0602089] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  65. D. Geissbühler, Double field theory and N = 4 gauged supergravity, JHEP 11 (2011) 116 [arXiv:1109.4280] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  66. M. Graña and D. Marqués, Gauged double field theory, JHEP 04 (2012) 020 [arXiv:1201.2924] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. R. Blumenhagen, X. Gao, D. Herschmann and P. Shukla, Dimensional oxidation of non-geometric fluxes in type II orientifolds, arXiv:1306.2761 [INSPIRE].

  68. F.F. Gautason, D. Junghans and M. Zagermann, Cosmological constant, near brane behavior and singularities, JHEP 09 (2013) 123 [arXiv:1301.5647] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. A. Fino and L. Ugarte, On the geometry underlying supersymmetric flux vacua with intermediate SU(2) structure, Class. Quant. Grav. 28 (2011) 075004 [arXiv:1007.1578] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  70. S. Console and M. Macri, Lattices, cohomology and models of six dimensional almost Abelian solvmanifolds, arXiv:1206.5977 [INSPIRE].

  71. U.H. Danielsson, S.S. Haque, P. Koerber, G. Shiu, T. Van Riet and T. Wrase, De Sitter hunting in a classical landscape, Fortsch. Phys. 59 (2011) 897 [arXiv:1103.4858] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  72. G. Aldazabal, P.G. Camara and J. Rosabal, Flux algebra, Bianchi identities and Freed-Witten anomalies in F-theory compactifications, Nucl. Phys. B 814 (2009) 21 [arXiv:0811.2900] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  73. G. Dibitetto, R. Linares and D. Roest, Flux compactifications, gauge algebras and de Sitter, Phys. Lett. B 688 (2010) 96 [arXiv:1001.3982] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  74. E. Malek, U-duality in three and four dimensions, arXiv:1205.6403 [INSPIRE].

  75. E. Malek, Timelike U-dualities in generalised geometry, JHEP 11 (2013) 185 [arXiv:1301.0543] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  76. J. de Boer and M. Shigemori, Exotic branes and non-geometric backgrounds, Phys. Rev. Lett. 104 (2010) 251603 [arXiv:1004.2521] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  77. J. de Boer and M. Shigemori, Exotic branes in string theory, Phys. Rept. 532 (2013) 65 [arXiv:1209.6056] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  78. E.A. Bergshoeff, T. Ortín and F. Riccioni, Defect branes, Nucl. Phys. B 856 (2012) 210 [arXiv:1109.4484] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  79. T. Kimura and S. Sasaki, Gauged linear σ-model for exotic five-brane, Nucl. Phys. B 876 (2013) 493 [arXiv:1304.4061] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  80. S. Kachru, M.B. Schulz, P.K. Tripathy and S.P. Trivedi, New supersymmetric string compactifications, JHEP 03 (2003) 061 [hep-th/0211182] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  81. D.A. Lowe, H. Nastase and S. Ramgoolam, Massive IIA string theory and matrix theory compactification, Nucl. Phys. B 667 (2003) 55 [hep-th/0303173] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  82. F. Marchesano and W. Schulgin, Non-geometric fluxes as supergravity backgrounds, Phys. Rev. D 76 (2007) 041901 [arXiv:0704.3272] [INSPIRE].

    ADS  Google Scholar 

  83. D. Andriot, M. Larfors, D. Lüst and P. Patalong, (Non-)commutative closed string on T-dual toroidal backgrounds, JHEP 06 (2013) 021 [arXiv:1211.6437] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  84. R. Blumenhagen, A. Deser, E. Plauschinn and F. Rennecke, Palatini-Lovelock-Cartan gravityBianchi identities for stringy fluxes, Class. Quant. Grav. 29 (2012) 135004 [arXiv:1202.4934] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  85. P. Candelas and D. Raine, Spontaneous compactification and supersymmetry in d = 11 supergravity, Nucl. Phys. B 248 (1984) 415 [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Andriot.

Additional information

ArXiv ePrint: 1306.4381

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andriot, D., Betz, A. β-supergravity: a ten-dimensional theory with non-geometric fluxes, and its geometric framework. J. High Energ. Phys. 2013, 83 (2013). https://doi.org/10.1007/JHEP12(2013)083

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP12(2013)083

Keywords

Navigation