Skip to main content
Log in

Introduction to Hybrid Numbers

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

In this study, we define a new non-commutative number system called hybrid numbers. This number system can be accepted as a generalization of the complex \(\left( {\mathbf {i}}^{2}=-1\right) \), hyperbolic \(\left( {\mathbf {h}} ^{2}=1\right) \) and dual number \(\left( \varvec{\varepsilon }^{2}=0\right) \) systems. A hybrid number is a number created with any combination of the complex, hyperbolic and dual numbers satisfying the relation \(\mathbf { ih=-hi=i}+\varvec{\varepsilon }.\) Because these numbers are a composition of dual, complex and hyperbolic numbers, we think that it would be better to call them hybrid numbers instead of the generalized complex numbers. In this paper, we give some algebraic and geometric properties of this number set with some classifications. In addition, we examined the roots of a hybrid number according to its type and character.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andreescu, T., Andrica, D.: Complex Numbers from A to...Z. Birkhäuser, Basel (2014)

    Book  MATH  Google Scholar 

  2. Babusci, D., Dattoli, G., Di Palma, E., Sabia, E.: Generalizations of the Euler identity. Adv. Appl. Clifford Algebras 22, 271–281 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Borota, N.A., Flores, E., Osler, T.J.: Spacetime numbers the easy way. Math. Comput. Educ. 34, 159–168 (2000)

    Article  Google Scholar 

  4. Borota, N.A., Osler, T.J.: Functions of a spacetime variable. Math. Comput. Educ. 36, 231–239 (2002)

    Google Scholar 

  5. Brewer, S.: Projective cross-ratio on hypercomplex numbers. Adv. Appl. Clifford Algebras 23(1), 1–14 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brodsky, V., Shoham, M.: Dual numbers representation of rigid body dynamics. Mech. Mach. Theory 34(5), 693–718 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Catoni, F., Cannata, R., Catoni, V., Zampetti, P.: Two dimensional hypercomplex number and related trigonometries. Adv. Appl. Clifford Algebras 14(1), 47–68 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Catoni, F., Boccaletti, D., Cannata, R., Catoni, V., Nichelatti, E., Zampetti, P.: The Mathematics of Minkowski Space–Time: With an Introduction to Commutative Hypercomplex Numbers. Birkhäuser, Basel (2008)

    MATH  Google Scholar 

  9. Catoni, F., Cannata, R., Catoni, V., Zampetti, P.: Hyperbolic trigonometry in two-dimensional space-time geometry. Nuovo Cimento B 118(5), 475 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  10. Cockle, J.: On a new imaginary in algebra 34:37–47. Lond. Edinb. Dublin Philos. Mag. 3(33), 435–9 (1849)

    Google Scholar 

  11. Dimentberg, F.M.: The method of screws and calculus of screws applied to the theory of three dimensional mechanisms. Adv. Mech. 3–4, 91–106 (1978)

    MathSciNet  Google Scholar 

  12. Erdoğdu, M., Özdemir, M.: Matrices over hyperbolic split quaternions. Filomat 30(4), 913–920 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fjelstad, P., Gal, S.G.: Two-dimensional geometries, topologies, trigonometries and physics generated by complex-type numbers. Adv. Appl. Clifford Algebras 11, 81 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fjelstad, P.: Extending special relativity via the perplex numbers. Am. J. Phys. 54(5), 416–422 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  15. Fjelstad, P., Gal, S.G.: n-Dimensional dual complex numbers. Adv. Appl. Clifford Algebras 8(2), 309–322 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fjelstad, P., Gal, S.G.: n-Dimensional hyperbolic complex numbers. Adv. Appl. Clifford Algebras 8(1), 47–68 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fischer, I.: Dual-Number Methods in Kinematics, Statics and Dynamics. CRC Press, Boca Raton (1999)

    Google Scholar 

  18. Gargoubi, H., Kossentini, S.: f-Algebra structure on hyperbolic numbers. Adv. Appl. Clifford Algebras 26(4), 1211–1233 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gromov, N.A.: Possible quantum kinematics. II. Nonminimal case. J. Math. Phys. 51(8), 083515 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Gromov, N.A.: Possible quantum kinematics. J. Math. Phys. 47(1), 013502 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Gromov, N.A., Kuratov, V.V.: All possible Cayley–Klein contractions of quantum orthogonal groups. Yadernaya Fiz. 68(10), 1752–1762 (2005)

    MathSciNet  Google Scholar 

  22. Gürses, N., Yüce, S.: One-parameter planar motions in generalized complex number plane. Adv. Appl. Clifford Algebras 25(4), 889–903 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Harkin, A.A., Harkin, J.B.: Geometry of generalized complex numbers. Math. Mag. 77(2), 118–29 (2004)

    MathSciNet  MATH  Google Scholar 

  24. Hudson, R.: Generalised translation-invariant mechanics. D. Phil. thesis, Bodleian Library, Oxford (1966)

  25. Hudson, R.: Translation invariant phase space mechanics. Quantum Theory Reconsid. Found. 2, 301–314 (2004)

    MathSciNet  Google Scholar 

  26. Kisil, V.V.: Geometry of Mobius Transformations: Elliptic, Parabolic and Hyperbolic Actions of SL2(R). Imperial College Press, London (2012)

    Book  MATH  Google Scholar 

  27. Kisil, V.V.: Induced representations and hypercomplex numbers. Adv. Appl. Clifford Algebras 23(2), 417–440 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kisil, V.V.: Two-dimensional conformal models of space–time and their compactification. J. Math. Phys. 48(7), 073506, 8 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kisil, V.V.: Erlangen program at large-2: inventing a wheel. The parabolic one. Trans. Inst. Math. NAS Ukr. 7(2), 89–98, (2010).

  30. Kisil, V.V.: Erlangen program at large-1: geometry of invariants. SIGMA Symmetry Integr. Geom. Methods Appl. 6(076), 45 (2010)

    MathSciNet  MATH  Google Scholar 

  31. Lavrentiev, M.A., Shabat, B.V.: Problems of Hydrodynamics and Their Mathematical Models. Nauka, Moscow (1973)

    Google Scholar 

  32. Miller, W., Boehning, R.: Gaussian, parabolic and hyperbolic numbers. Math. Teach. 61(4), 377–82 (1968)

    Google Scholar 

  33. Motter, A.E., Rosa, M.A.F.: Hyperbolic calculus. Adv. Appl. Clifford Algebras 8(1), 109–128 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  34. Olariu, S.: Hyperbolic complex numbers in two dimensions. arxiv:math/0008119 (2000)

  35. Olariu, S.: Complex Numbers in n Dimensions, North Holland, Series: North-Holland Mathematics Studies, vol. 190. arXiv:math/0011044 (2002)

  36. Olariu, S.: Commutative complex numbers in four dimensions. arXiv:math/0008121v1 (2000)

  37. Özdemir, M., Ergin, A.A.: Rotations with unit timelike quaternions in Minkowski 3-space. J. Geom. Phys. 56, 322–336 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Özdemir, M.: The roots of a split quaternion. Appl. Math. Lett. 22(2), 258–263 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Özdemir, M.: An alternative approach to elliptical motion. Adv. Appl. Clifford Algebras 26(1), 279–304 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. Özdemir, M.: Finding the roots of a 2 x 2 matrix using De Moivre formula In progress (2018)

  41. Özdemir, M., Erdoğdu, M., Şimşek, H.: On the eigenvalues and eigenvectors of a Lorentzian rotation matrix by using split quaternions. Adv. Appl. Clifford Algebras 24, 179–192 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Pilipchuk, V.N.: Nonlinear Dynamics. Between Linear and Impact Limits, Lecture Notes in App. and Comp. Mechanics, vol. 52. Springer, Berlin (2010)

    Google Scholar 

  43. Pilipchuk, V.N.: Non-smooth spatio-temporal coordinates in nonlinear dynamics. arXiv:1101.4597 (2011)

  44. Pilipchuk, V.N., Andrianov, I.V., Markert, B.: Analysis of micro-structural effects on phononic waves in layered elastic media with periodic nonsmooth coordinates. Wave Motion 63, 149–169 (2016)

    Article  MathSciNet  Google Scholar 

  45. Poodiack, R.D., LeClair, K.J.: Fundamental theorems of algebra for the perplexes. Coll. Math. J. 40(5), 322–35 (2009)

    Article  MathSciNet  Google Scholar 

  46. Rochon, D., Shapiro, M.: On algebraic properties of bicomplex and hyperbolic numbers. Anal. Univ. Oradea Fasc. Math. 11, 71–110 (2004)

    MathSciNet  MATH  Google Scholar 

  47. Rooney, J.: On the three types of complex number and planar transformations. Environ. Plan. B 5, 89–99 (1978)

    Article  Google Scholar 

  48. Rooney, J.: Generalised complex numbers in mechanics. Adv. Theory Pract. Robots Manip. Mech. Machine Sci. Book Series, vol. 22, pp. 55–62 (2014)

  49. Şimşek, H., Özdemir, M.: Generating hyperbolical rotation matrix for a given hyperboloid. Linear Algebra Appl. 496, 221–245 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  50. Şimşek, H., Özdemir, M.: Shape curvatures of the Lorentzian plane curves. Commun. Fac. Sci. Univ. Ank. Ser. A1 66(2), 276–288 (2017)

    MathSciNet  Google Scholar 

  51. Şimşek, H., Özdemir, M.: On conformal curves in 2-dimensional de Sitter space. Adv. Appl. Clifford Algebras 26(2), 757–770 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  52. Sobczyk, G.: Hyperbolic number plane. Coll. Math. J. 26, 268–80 (1995)

    Article  Google Scholar 

  53. Study, E.: Geometrie der Dynamen, p 196. Cornell Historical Mathematical Monographs at Cornell University Geometrie der Dynamen. Die Zusammensetzung von kräften und verwandte gegenstände der geometrie, Leipzig, B. G. Teubner, (1903)

  54. Ulrych, S.: Representations of clifford algebras with hyperbolic numbers. Adv. Appl. Clifford Algebras 18(1), 93–114 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  55. Ulrych, S.: Relativistic quantum physics with hyperbolic numbers. Phys. Lett. B 625, 313–323 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Ulrych, S.: Considerations on the hyperbolic complex Klein–Gordon equation. J. Math. Phys. 51, 063510 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Veldkamp, G.R.: On the use of dual numbers, vectors and matrices in instantaneous, spatial kinematics. Mech. Mach. Theory 11(2), 141–156 (1976)

    Article  Google Scholar 

  58. Yaglom, I.M.: A Simple Non-Euclidean Geometry and its Physical Basis. Heidelberg Science Library. Springer, New York (1979)

    MATH  Google Scholar 

  59. Yaglom, I.M.: Complex Numbers in Geometry. Academic Press, New York (1968)

    MATH  Google Scholar 

  60. Zaripov, R.G.: Conformal hyperbolic numbers and two-dimensional Finsler geometry. Adv. Appl. Clifford Algebras 27(2), 1741–1760 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Özdemir.

Additional information

Communicated by G. Stacey Staples.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özdemir, M. Introduction to Hybrid Numbers. Adv. Appl. Clifford Algebras 28, 11 (2018). https://doi.org/10.1007/s00006-018-0833-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00006-018-0833-3

Keywords

Mathematics Subject Classification

Navigation