Skip to main content
Log in

A Uniform Method to Ulam–Hyers Stability for Some Linear Fractional Equations

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we first utilize fractional calculus, the properties of classical and generalized Mittag-Leffler functions to prove the Ulam–Hyers stability of linear fractional differential equations using Laplace transform method. Meanwhile, Ulam–Hyers–Rassias stability result is obtained as a direct corollary. Finally, we apply the same techniques to discuss the Ulam’s type stability of fractional evolution equations, impulsive fractional evolutions equations and Sobolev-type fractional evolution equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ulam, S.M.: A collection of mathematical problems. In: Interscience Tracts in Pure and Applied Mathematics, No. 8, Interscience, New York (1960)

  2. Obłoza M.: Hyers stability of the linear differential equation. Rocznik Nauk.-Dydakt. Prace Mat., 13 (1993)

  3. Alsina C., Ger R.: On some inequalities and stability results related to the exponential function. J. Inequal. Appl. 2, 373–380 (1998)

    MathSciNet  MATH  Google Scholar 

  4. Jung S.M.: Hyers-Ulam stability of linear differential equations of first order. Appl. Math. Lett. 17, 1135–1140 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Miura T., Miyajima S., Takahasi S.E.: A characterization of Hyers–Ulam stability of first order linear differential operators. J. Math. Anal. Appl. 286, 136–146 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Takahasi S.E., Miura T., Miyajima S.: On the Hyers-Ulam stability of the Banach spacevalued differential equation \({y^{\prime} = \lambda y}\). Bull. Korean Math. Soc. 39, 309–315 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Wang G., Zhou M., Sun L.: Hyers-Ulam stability of linear differential equations of first order. Appl. Math. Lett. 21, 1024–1028 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. András S.Z., Kolumbán J.J.: On the Ulam-Hyers stability of first order differential systems with nonlocal initial conditions. Nonlinear Anal. TMA 82, 1–11 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cimpean D.S., Popa D.: Hyers-Ulam stability of Euler’s equation. Appl. Math. Lett. 24, 1539–1543 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hegyi B., Jung S.M.: On the stability of Laplace’s equation. Appl. Math. Lett. 26, 549–552 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lungu N., Popa D.: Hyers-Ulam stability of a first order partial differential equation. J. Math. Anal. Appl. 385, 86–91 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Rus I.A.: Ulam stability of ordinary differential equations. Stud. Univ. Babeş Bolyai Math. 54, 125–133 (2009)

    MathSciNet  MATH  Google Scholar 

  13. Cădariu, L.: Stabilitatea Ulam-Hyers-Bourgin pentru ecuatii functionale, Ed. Univ. Vest Timişoara, Timişara (2007)

  14. Castro L.P., Ramos A.: Hyers–Ulam–Rassias stability for a class of nonlinear Volterra integral equations. Banach. J. Math. Anal. 3, 36–43 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wang J., Fec̆kan M., Zhou Y.: Ulam’s type stability of impulsive ordinary differential equations. J. Math. Anal. Appl. 395, 258–264 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Rezaei H., Jung S.M., Rassias T.M.: Laplace transform and Hyers-Ulam stability of linear differential equations. J. Math. Anal. Appl. 403, 244–251 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Alqifiary Q.H., Jung S.M.: Laplace transform and generalized Hyers-Ulam stability of linear differential equations. Electron. J. Diff. Equ. 2014, 1–11 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Baleanu, D., Machado, J.A.T., Luo, A.C.-J.: Fractional Dynamics and Control, Springer, Berlin (2012)

  19. Diethelm, K.: The Analysis of Fractional Differential Equations. Lecture Notes in Mathematics (2010)

  20. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier Science B.V. (2006)

  21. Tarasov, V.E.: Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer,Berlin, HEP (2011)

  22. Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2014)

  23. Zhou Y., Jiao F.: Nonlocal Cauchy problem for fractional evolution equations. Nonlinear Anal. RWA 11, 4465–4475 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang J., Fečkan M., Zhou Y.: Presentation of solutions of impulsive fractional Langevin equations and existence results. Eur. Phys. J. Special Top. 222, 1855–1872 (2013)

    Google Scholar 

  25. Loverro, A.: Fractional calculus, history, definitions and applications for the engineer. Rapport technique, University of Notre Dame: Department of Aerospace and Mechanical Engineering (May 2004)

  26. Wang J., Fečkan M., Zhou Y.: On the new concept of solutions and existence results for impulsive fractional evolution equations. Dyn. Part Differ. Eq. 8, 345–361 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Fečkan M., Wang J., Zhou Y.: Controllability of fractional functional evolution equations of Sobolev type via characteristic solution operators. J. Optim. Theory. Appl. 156, 79–95 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JinRong Wang.

Additional information

This work is supported by National Natural Science Foundation of China (11201091) and Outstanding Scientific and Technological Innovation Talent Award of Education Department of Guizhou Province ([2014]240).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Li, X. A Uniform Method to Ulam–Hyers Stability for Some Linear Fractional Equations. Mediterr. J. Math. 13, 625–635 (2016). https://doi.org/10.1007/s00009-015-0523-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00009-015-0523-5

Mathematics Subject Classification

Keywords

Navigation