Skip to main content
Log in

New Convolutions for Quadratic-Phase Fourier Integral Operators and their Applications

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

We obtain new convolutions for quadratic-phase Fourier integral operators (which include, as subcases, e.g., the fractional Fourier transform and the linear canonical transform). The structure of these convolutions is based on properties of the mentioned integral operators and takes profit of weight-functions associated with some amplitude and Gaussian functions. Therefore, the fundamental properties of that quadratic-phase Fourier integral operators are also studied (including a Riemann–Lebesgue type lemma, invertibility results, a Plancherel type theorem and a Parseval type identity). As applications, we obtain new Young type inequalities, the asymptotic behaviour of some oscillatory integrals, and the solvability of convolution integral equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almeida, L.B.: Product and convolution theorems for the fractional Fourier transform. IEEE Signal Process. Lett. 4(1), 15–17 (1997)

    Article  Google Scholar 

  2. Anh, P.K., Castro, L.P., Thao, P.T., Tuan, N.M.: Two new convolutions for the fractional Fourier transform. Wirel. Pers. Commun. 92(2), 623–637 (2017)

    Article  Google Scholar 

  3. Anh, P.K., Tuan, N.M., Tuan, P.D.: The finite Hartley new convolutions and solvability of the integral equations with Toeplitz plus Hankel kernels. J. Math. Anal. Appl. 397(2), 537–549 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beckner, W.: Inequalities in Fourier analysis. Ann. Math. 102, 159–182 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brascamp, H.J., Lieb, E.H.: Best constants in Young’s inequality, its converse, and its generalization to more than three functions. Adv. Math. 20, 151–173 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  6. Castro, L.P.: Regularity of convolution type operators with PC symbols in Bessel potential spaces over two finite intervals. Math. Nachr. 261–262, 23–36 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Castro, L.P., Duduchava, R., Speck, F.-O.: Finite interval convolution operators with transmission property. Integral Equ. Oper. Theory 52(2), 165–179 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Castro, L.P., Haque, M.R., Murshed, M.M., Saitoh, S., Tuan, N.M.: Quadratic Fourier transforms. Ann. Funct. Anal. AFA 5(1), 10–23 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Castro, L.P., Kapanadze, D.: Dirichlet-Neumann-impedance boundary value problems arising in rectangular wedge diffraction problems. Proc. Am. Math. Soc. 136(6), 2113–2123 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Castro, L.P., Kapanadze, D.: Wave diffraction by a half-plane with an obstacle perpendicular to the boundary. J. Differ. Equ. 254(2), 493–510 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Castro, L.P., Speck, F.-O.: Inversion of matrix convolution type operators with symmetry. Port. Math. (N.S.) 62(2), 193–216 (2005)

  12. Castro, L.P., Saitoh, S.: New convolutions and norm inequalities. Math. Inequal. Appl. 15(3), 707–716 (2012)

    MathSciNet  MATH  Google Scholar 

  13. Castro, L.P., Saitoh, S., Tuan, N.M.: Convolutions, integral transforms and integral equations by means of the theory of reproducing kernels. Opusc. Math. 32(4), 633–646 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jain, P., Jain, S.: On Young type inequalities for generalized convolutions. Proc. A. Razmadze Math. Inst. 164, 45–61 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Jain, P., Jain, S.: Generalized convolution inequalities and application. Mediterr. J. Math. (2017). https://doi.org/10.1007/s00009-017-0961-3

  16. Jain, P., Jain, S., Kumar, R.: On fractional convolutions and distributions. Integral Transforms Spec. Funct. 26(10), 885–899 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Nhan, N.D.V., Duc, D.T.: Weighted \(L^p\)-norm inequalities in convolutions and their applications. J. Math. Inequal. 2, 45–55 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Oinarov, R.: Boundedness and compactness of a class of convolution integral operators of fractional integration type. Proc. Steklov Inst. Math. 293, 255–271 (2016). [translation from Tr. Mat. Inst. Steklova 293, 263–279 (2016)]

  19. Phong, D.H., Stein, E.M.: Models of degenerate Fourier integral operators and Radon transforms. Ann. Math. 140, 703–722 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  20. Phong, D.H., Stein, E.M.: Oscillatory integrals with polynomial phases. Invent. Math. 110, 39–62 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rudin, W.: Functional analysis, 2nd edn. McGraw-Hill, New York (1991)

    MATH  Google Scholar 

  22. Singh, A.K., Saxena, R.: On convolution and product theorems for FRFT. Wirel. Pers. Commun. 65(1), 189–201 (2012)

    Article  Google Scholar 

  23. Stein, E.M.: Harmonic analysis. Princeton University Press, Princeton (1993)

    Google Scholar 

  24. Titchmarsh, E.C.: Introduction to the theory of Fourier integrals, 3rd edn. Chelsea Publishing Co., New York (1986)

    MATH  Google Scholar 

  25. Tuan, N.M., Huyen, N.T.T.: Applications of generalized convolutions associated with the Fourier and Hartley transforms. J. Integral Equ. Appl. 24(1), 111–130 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Vinogradov, O.L.: Sharp inequalities for approximations of convolution classes on the real line as the limit case of inequalities for periodic convolutions. Sib. Math. J. 58(2), 190–204 (2017) [translation from Sib. Mat. Zh. 58(2), 251-269 (2017)]

  27. Wright, J.: From oscillatory integrals to complete exponential sums. Math. Res. Lett. 18(2), 231–250 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zayed, A.I.: A convolution and product theorem for the fractional Fourier transform. IEEE Signal Process. Lett. 5(4), 102–103 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

The first-named author was supported in part by FCT–Portuguese Foundation for Science and Technology through the Center for Research and Development in Mathematics and Applications (CIDMA) at Universidade de Aveiro, within the Project UID/MAT/04106/2013. The two last named-authors were partially supported by the Viet Nam National Foundation for Science and Technology Development (NAFOSTED).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. P. Castro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castro, L.P., Minh, L.T. & Tuan, N.M. New Convolutions for Quadratic-Phase Fourier Integral Operators and their Applications. Mediterr. J. Math. 15, 13 (2018). https://doi.org/10.1007/s00009-017-1063-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-017-1063-y

Keywords

Mathematics subject classification

Navigation