Skip to main content

Advertisement

Log in

N-Pyrazoloyl and N-thiopheneacetyl hydrazone of isatin exhibited potent anti-inflammatory and anti-nociceptive properties through suppression of NF-κB, MAPK and oxidative stress signaling in animal models of inflammation

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Background

Hydrazide derivatives constitute an important class of compounds for new drug development as they are reported to possess good anti-inflammatory and analgesic activity. The present study was aimed to investigate the role of newly synthesized hydrazide derivatives N-pyrazoloyl hydrazone of isatin (PHI) and N-thiopheneacetyl hydrazone of isatin (THI) in acute and chronic inflammatory pain models induced by carrageenan and complete Freud’s adjuvant (CFA).

Materials

PHI and THI (0.1, 1 and 10 mg/kg) pretreatments were provided intraperitoneally to male BALB/c mice prior to inflammatory inducers. Behavioral responses to inflammation and pain were evaluated by assessment of paw edema, mechanical allodynia, mechanical and thermal hyperalgesia. Cytokines production and NF-κB levels were evaluated by ELISA. Western blot analysis was performed for the detection of IκBα, p38, JNK and ERK. Hematoxylin and eosin (H&E) staining and radiographic analysis were performed to evaluate the effect of PHI and THI treatment on bone and soft tissues. Oxidative stress was determined by reduced glutathione, glutathione-S-transferase and catalase assays. Evans blue dye was used to monitor vascular protein leakage.

Result

PHI and THI dose dependently (0.1, 1 and 10 mg/kg) reduced inflammation and pain in mice, however, the dose of 10 mg/kg exhibited significant activity. The anti-inflammatory and analgesic effects were attributed to suppression of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) production levels. PHI and THI significantly blocked CFA-induced activation of NF-κB and MAPK signaling pathways. Oxidative stress and plasma nitrite levels were reduced remarkably. The PHI and THI (10 mg/kg) treatment did not exhibit any apparent toxicity on the liver, kidney, muscles strength, and motor co‐ordination in mice.

Conclusion

Both PHI and THI possess significant anti-inflammatory and analgesic activity via inhibition of inflammatory mediators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CFA:

Complete Freund’s adjuvant

COX-2:

Cyclooxygenase-2

NF-κB:

Nuclear factor kappa B

NO:

Nitric oxide

MAPKs:

Mitogen activated protein kinase

i.p.:

Intraperitoneal

i.pl:

Intraplantar

PHI:

N-Pyrazoloyl hydrazone of isatin

THI:

N-Thiopheneacetyl hydrazone of isatin

VEGF:

Vascular endothelial growth factor

MID#:

Mid cells count

CDNB:

1-Chloro-2,4-dinitrobenzene

References

  1. Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008;454(7203):428. https://doi.org/10.1038/nature07201.

    Article  CAS  PubMed  Google Scholar 

  2. Lima MAGD, Trad LAB. The medical perspective towards chronic pain: biomedical model and clinical practice. Cadernos de saude publica. 2007;23(11):2672–80. https://doi.org/10.1590/S0102-311X2007001100015.

    Article  PubMed  Google Scholar 

  3. Pellicano R. Gastrointestinal damage by non-steroidal anti-inflammatory drugs: updated clinical considerations. Minerva Gastroenterol Dietol. 2014;60(4):255–61.

    CAS  PubMed  Google Scholar 

  4. Onasanwo SA, et al. Anti-nociceptive and anti-inflammatory potentials of Vernonia amygdalina leaf extract via reductions of leucocyte migration and lipid peroxidation. J Intercult Ethnopharmacol. 2017;6(2):192. https://doi.org/10.5455/jice.20170330010610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ahmad N, et al. A novel pregabalin functionalized salicylaldehyde derivative afforded prospective pain, inflammation, and pyrexia alleviating propensities. Archiv der Pharmazie. 2017;350(6):e1600365 (1–9). https://doi.org/10.1002/ardp.201600365.

    Article  CAS  Google Scholar 

  6. Fujiwara N, Kobayashi K. Macrophages in inflammation. Curr Drug Targets Inflamm Allergy. 2005;4(3):281–6. https://doi.org/10.2174/1568010054022024.

    Article  CAS  PubMed  Google Scholar 

  7. Smolen JS, Steiner G. Therapeutic strategies for rheumatoid arthritis. Nat Rev Drug Discovery. 2003;2(6):473. https://doi.org/10.1038/nrd1109.

    Article  CAS  PubMed  Google Scholar 

  8. Sandkühler JR. Models and mechanisms of hyperalgesia and allodynia. Physiol Rev. 2009;89(2):707–58.

    Article  PubMed  Google Scholar 

  9. Vanegas H, Schaible H-G. Erratum to “Prostaglandins and cyclooxygenases in the spinal cord”[Progress in Neurobiology 64 (2001) 327–363]. Prog Neurobiol. 2001;65(6):609.

    Article  CAS  Google Scholar 

  10. Verri WA Jr, et al. Hypernociceptive role of cytokines and chemokines: targets for analgesic drug development? Pharmacol Ther. 2006;112(1):116–38. https://doi.org/10.1016/j.pharmthera.2006.04.001Get.

    Article  CAS  PubMed  Google Scholar 

  11. Matsumori A, Nunokawa Y, Sasayama S. Pimobendan inhibits the activation of transcription factor NF-κB: a mechanism which explains its inhibition of cytokine production and inducible nitric oxide synthase. Life Sci. 2000;67(20):2513–9. https://doi.org/10.1016/S0024-3205(00)00834-1.

    Article  CAS  PubMed  Google Scholar 

  12. Wang C, et al. Nuclear factor-kappa B mediates TRPV4–NO pathway involved in thermal hyperalgesia following chronic compression of the dorsal root ganglion in rats. Behav Brain Res. 2011. https://doi.org/10.1016/j.bbr.2011.02.028.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Crofford LJ. Adverse effects of chronic opioid therapy for chronic musculoskeletal pain. Nat Rev Rheumatol. 2010;6(4):191. https://doi.org/10.1038/nrrheum.2010.24.

    Article  CAS  PubMed  Google Scholar 

  14. Ajani OO, et al. Microwave assisted synthesis and antimicrobial activity of 2-quinoxalinone-3-hydrazone derivatives. Bioorg Med Chem. 2010;18(1):214–21. https://doi.org/10.1016/j.bmc.2009.10.064.

    Article  CAS  PubMed  Google Scholar 

  15. Sriram D, Bal TR, Yogeeswari P. Synthesis, antiviral and antibacterial activities of isatin mannich bases. Med Chem Res. 2005;14(4):211–28. https://doi.org/10.1007/s00044-005-0135-x.

    Article  CAS  Google Scholar 

  16. Vine KL, et al. Recent highlights in the development of isatin-based anticancer agents. Adv Anticancer Agents Med Chem. 2013;2:254–312.

    Article  CAS  Google Scholar 

  17. Turan-Zitouni G, et al. Studies on 1, 2, 4-Triazole Derivatives as Potential Anti-Inflammatory Agents. Arch Pharm. 2007;340(11):586–90. https://doi.org/10.1002/ardp.200700134.

    Article  CAS  Google Scholar 

  18. Singh G, Singh T, Lakhan R. Synthesis, 13C NMR and anticonvulsant activity of new isatin-based spiroazetidinones. ChemInform. 1998;29(17):777–80.

    Google Scholar 

  19. Asif M, Husain A. Analgesic, anti-Inflammatory, and antiplatelet profile of hydrazones containing synthetic molecules. J Appl Chem. 2013;2013:1–7. https://doi.org/10.1155/2013/247203.

    Article  CAS  Google Scholar 

  20. Morris CJ. Carrageenan-induced paw edema in the rat and mouse. Inflamm Protoc. 2003. https://doi.org/10.1385/1-59259-374-7:115 (Springer).

    Article  Google Scholar 

  21. Khan S, et al. Anti-hyperalgesic and anti-allodynic activities of capillarisin via suppression of inflammatory signaling in animal model. J Ethnopharmacol. 2014;152(3):478–86. https://doi.org/10.1016/j.jep.2014.01.028.

    Article  CAS  PubMed  Google Scholar 

  22. Khan S, et al. Molecular mechanism of capillarisin-mediated inhibition of MyD88/TIRAP inflammatory signaling in in vitro and in vivo experimental models. J Ethnopharmacol. 2013;145(2):626–37. https://doi.org/10.1016/j.jep.2012.12.001.

    Article  CAS  PubMed  Google Scholar 

  23. Khan S, et al. Mechanism underlying anti-hyperalgesic and anti-allodynic properties of anomalin in both acute and chronic inflammatory pain models in mice through inhibition of NF-κB, MAPKs and CREB signaling cascades. Eur J Pharmacol. 2013;718(1–3):448–58. https://doi.org/10.1016/j.ejphar.2013.07.039.

    Article  CAS  PubMed  Google Scholar 

  24. Khan S, et al. Attenuation of neuropathic pain and neuroinflammatory responses by a pyranocoumarin derivative, anomalin in animal and cellular models. Eur J Pharmacol. 2016;774:95–104. https://doi.org/10.1016/j.ejphar.2016.02.008.

    Article  CAS  PubMed  Google Scholar 

  25. Pinho-Ribeiro FA, et al. Protective effects of the flavonoid hesperidin methyl chalcone in inflammation and pain in mice: role of TRPV1, oxidative stress, cytokines and NF-κB. Chem Biol Interact. 2015;228:88–99. https://doi.org/10.1016/j.cbi.2015.01.011.

    Article  CAS  PubMed  Google Scholar 

  26. Khalid S, et al. Antihyperalgesic properties of honokiol in inflammatory pain models by targeting of NF-κB and Nrf2 signaling. Front Pharmacol. 2018;9:140. https://doi.org/10.3389/fphar.2018.00140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Khan S, et al. Suppression of LPS-induced inflammatory and NF-κB responses by anomalin in RAW 264.7 macrophages. J Cell Biochem. 2011;112(8):2179–88. https://doi.org/10.1002/jcb.23137.

    Article  CAS  PubMed  Google Scholar 

  28. Khan S, et al. Anti-inflammatory mechanism of 15, 16-epoxy-3α-hydroxylabda-8, 13 (16), 14-trien-7-one via inhibition of LPS-induced multicellular signaling pathways. J Nat Prod. 2012;75(1):67–71. https://doi.org/10.1021/np200666t.

    Article  CAS  PubMed  Google Scholar 

  29. Ellman M. A spectrophotometric method for determination of reduced glutathione in tissues. Anal Biochem. 1959;74:214–26.

    Google Scholar 

  30. Jakobson I, Warholm M, Mannervik B. Multiple inhibition of glutathione S-transferase A from rat liver by glutathione derivatives: kinetic analysis supporting a steady-state random sequential mechanism. Biochem J. 1979;177(3):861. https://doi.org/10.1042/bj1770861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Aebi H. [13] Catalase in vitro. Methods Enzymol. 1984. https://doi.org/10.1016/S0076-6879(84)05016-3 (Elsevier).

    Article  PubMed  Google Scholar 

  32. Khan A, et al. Antinociceptive properties of 25-methoxy hispidol A, a triterpinoid isolated from Poncirus trifoliata (Rutaceae) through inhibition of NF-κB signalling in mice. Phytother Res. 2018. https://doi.org/10.1002/ptr.6223.

    Article  PubMed  Google Scholar 

  33. Ullah MZ, et al. Attenuation of inflammatory pain by puerarin in animal model of inflammation through inhibition of pro-inflammatory mediators. Int Immunopharmacol. 2018;61:306–16. https://doi.org/10.1016/j.intimp.2018.05.034.

    Article  CAS  PubMed  Google Scholar 

  34. Coradini K, et al. A novel approach to arthritis treatment based on resveratrol and curcumin co-encapsulated in lipid-core nanocapsules: in vivo studies. Eur J Pharm Sci. 2015;78:163–70. https://doi.org/10.1016/j.ejps.2015.07.012.

    Article  CAS  PubMed  Google Scholar 

  35. Rasheed H, et al. Anti-inflammatory, anti-rheumatic and analgesic activities of 2-(5-mercapto-1, 3, 4-oxadiazol-2-yl)-N-propylbenzenesulphonamide (MOPBS) in rodents. Inflammopharmacology. 2018. https://doi.org/10.1007/s10787-018-0446-4.

    Article  PubMed  Google Scholar 

  36. Terker AS, et al. Potassium modulates electrolyte balance and blood pressure through effects on distal cell voltage and chloride. Cell Metab. 2015;21(1):39–50. https://doi.org/10.1016/j.cmet.2014.12.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kumar V, et al. Therapeutic effect of umbelliferon-α-d-glucopyranosyl-(2 I → 1 II)-α-d-glucopyranoside on adjuvant-induced arthritic rats. J Food Sci Technol. 2015;52(6):3402–11.

    CAS  PubMed  Google Scholar 

  38. Li M, et al. Effects of complete Freund’s adjuvant on immunohistochemical distribution of IL-1β and IL-1R I in neurons and glia cells of dorsal root ganglion 1. Acta Pharmacol Sin. 2005;26(2):192–8. https://doi.org/10.1111/j.1745-7254.2005.00522.x.

    Article  CAS  PubMed  Google Scholar 

  39. Dinarello CA. Interleukin-1, interleukin-1 receptors and interleukin-1 receptor antagonist. Int Rev Immunol. 1998;16(5–6):457–99. https://doi.org/10.3109/08830189809043005.

    Article  CAS  PubMed  Google Scholar 

  40. De Jongh RF, et al. The role of interleukin-6 in nociception and pain. Anesth Analg. 2003;96(4):1096–103. https://doi.org/10.1213/01.ANE.0000055362.56604.78.

    Article  CAS  PubMed  Google Scholar 

  41. Fukuoka H, et al. Cutaneous hyperalgesia induced by peripheral injection of interleukin-1β in the rat. Brain Res. 1994;657(1–2):133–40. https://doi.org/10.1016/0006-8993(94)90960-1.

    Article  CAS  PubMed  Google Scholar 

  42. Sharma PK, et al. Synthesis and anti-inflammatory activity evaluation of novel triazolyl-isatin hybrids. J Enzyme Inhib Med Chem. 2016;31(6):1520–6. https://doi.org/10.3109/14756366.2016.1151015.

    Article  CAS  PubMed  Google Scholar 

  43. Lema CVAM. When does acute pain become chronic? Br J Anaesth. 2010;105:i69–85. https://doi.org/10.1093/bja/aeq323.

    Article  PubMed  Google Scholar 

  44. Karin M, Greten FR. NF-κB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol. 2005;5(10):749. https://doi.org/10.1038/nri1703.

    Article  CAS  PubMed  Google Scholar 

  45. Wagner EF, Nebreda ÁR. Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer. 2009;9(8):537. https://doi.org/10.1371/journal.pone.0171738.

    Article  CAS  PubMed  Google Scholar 

  46. Ji R-R, et al. MAP kinase and pain. Brain Res Rev. 2009;60(1):135–48. https://doi.org/10.1016/j.brainresrev.2008.12.011.

    Article  CAS  PubMed  Google Scholar 

  47. Saccani S, Pantano S, Natoli G. p38-Dependent marking of inflammatory genes for increased NF-κB recruitment. Nat Immunol. 2002;3(1):69. https://doi.org/10.1038/ni748.

    Article  CAS  PubMed  Google Scholar 

  48. Niederberger E, Geisslinger G. The IKK-NF-κB pathway: a source for novel molecular drug targets in pain therapy? FASEB J. 2008;22(10):3432–42. https://doi.org/10.1096/fj.08-109355.

    Article  CAS  PubMed  Google Scholar 

  49. Mansour MA, et al. Effects of thymoquinone on antioxidant enzyme activities, lipid peroxidation and DT-diaphorase in different tissues of mice: a possible mechanism of action. Cell Biochem Funct. 2002;20(2):143–51. https://doi.org/10.1002/cbf.968.

    Article  CAS  PubMed  Google Scholar 

  50. Khan KM, et al. Bis-Schiff bases of isatins: a new class of antioxidant. J Pharm Res. 2011;4(10):3402–4.

    CAS  Google Scholar 

  51. Guindon J, et al. Synergistic antinociceptive effects of anandamide, an endocannabinoid, and nonsteroidal anti-inflammatory drugs in peripheral tissue: a role for endogenous fatty-acid ethanolamides? Eur J Pharmacol. 2006;550(1–3):68–77. https://doi.org/10.1016/j.ejphar.2006.08.045.

    Article  CAS  PubMed  Google Scholar 

  52. Vane J, Botting R. Anti-inflammatory drugs and their mechanism of action. Inflamm Res. 1998;47(2):78–87. https://doi.org/10.1007/s000110050284

  53. Tischler AN et al (1989) 5-methylthio-3-hydroxybenzo [b] thiophene-2-carboxamide derivatives as cyclooxygenase and lipoxygenase inhibitors. Google Patents

  54. Dworkin RH, et al. Advances in neuropathic pain: diagnosis, mechanisms, and treatment recommendations. Arch Neurol. 2003;60(11):1524–34. https://doi.org/10.1001/archneur.60.11.1524.

    Article  PubMed  Google Scholar 

  55. Tanabe M, et al. Pain relief by gabapentin and pregabalin via supraspinal mechanisms after peripheral nerve injury. J Neurosci Res. 2008;86(15):3258–64. https://doi.org/10.1002/jnr.21786.

    Article  CAS  PubMed  Google Scholar 

  56. Vanderah TW. Pathophysiology of pain. Med Clin. 2007;91(1):1–12. https://doi.org/10.1016/j.mcna.2006.10.006.

    Article  Google Scholar 

  57. McCleane G, Smith HS. Opioids for persistent noncancer pain. Anesthesiol Clin. 2007;25(4):787–807. https://doi.org/10.1016/j.mcna.2006.10.013.

    Article  CAS  PubMed  Google Scholar 

  58. Berrocoso E, De Benito MD, Mico JA. Role of serotonin 5-HT 1A and opioid receptors in the antiallodynic effect of tramadol in the chronic constriction injury model of neuropathic pain in rats. Psychopharmacology. 2007;193(1):97–105. https://doi.org/10.1007/s00213-007-0761-8.

    Article  CAS  PubMed  Google Scholar 

  59. Cook NR, et al. Joint effects of sodium and potassium intake on subsequent cardiovascular disease: the trials of hypertension prevention follow-up study. Arch Intern Med. 2009;169(1):32–40. https://doi.org/10.1001/archinternmed.2008.523.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Harirforoosh S, Jamali F. Renal adverse effects of nonsteroidal anti-inflammatory drugs. Expert Opin Drug Saf. 2009;8(6):669–81. https://doi.org/10.1517/14740330903311023.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Research Foundation of Korea (NRF), Seoul National University, grant funded by the Korean Government (MSIP) (No. 2009-0083533). We are grateful to Stephanie Yanow, Associate Professor in Global Health School of Public Health, University of Alberta for her valuable help in editing of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salman Khan.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 947 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeeshan, S., Naveed, M., Khan, A. et al. N-Pyrazoloyl and N-thiopheneacetyl hydrazone of isatin exhibited potent anti-inflammatory and anti-nociceptive properties through suppression of NF-κB, MAPK and oxidative stress signaling in animal models of inflammation. Inflamm. Res. 68, 613–632 (2019). https://doi.org/10.1007/s00011-019-01245-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-019-01245-9

Keywords

Navigation