Skip to main content
Log in

Protein–protein interactions: switch from classical methods to proteomics and bioinformatics-based approaches

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Following the sequencing of the human genome and many other organisms, research on protein-coding genes and their functions (functional genomics) has intensified. Subsequently, with the observation that proteins are indeed the molecular effectors of most cellular processes, the discipline of proteomics was born. Clearly, proteins do not function as single entities but rather as a dynamic network of team players that have to communicate. Though genetic (yeast two-hybrid Y2H) and biochemical methods (co-immunoprecipitation Co-IP, affinity purification AP) were the methods of choice at the beginning of the study of protein–protein interactions (PPI), in more recent years there has been a shift towards proteomics-based methods and bioinformatics-based approaches. In this review, we first describe in depth PPIs and we make a strong case as to why unraveling the interactome is the next challenge in the field of proteomics. Furthermore, classical methods of investigation of PPIs and structure-based bioinformatics approaches are presented. The greatest emphasis is placed on proteomic methods, especially native techniques that were recently developed and that have been shown to be reliable. Finally, we point out the limitations of these methods and the need to set up a standard for the validation of PPI experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

SDS-PAGE:

Sodium dodecyl sulfate–polyacrylamide gel electrophoresis

BN-PAGE:

Blue native PAGE

CN-PAGE:

Colorless native PAGE

Mw:

Molecular weight

WB:

Western blotting

MS:

Mass spectrometry

LC–MS/MS:

Liquid chromatography mass spectrometry

MALDI-MS:

Matrix-assisted laser desorption ionization mass spectrometry

m/z :

Mass/charge

CID:

Collision-induced dissociation

ATP:

Adenosine triphosphate

GTP:

Guanosine triphosphate

RNA:

Ribonucleic acid

PTMs:

Post-translational modifications

PPIs:

Protein–protein interactions

Y2H:

Yeast two-hybrid

TAP-MS:

Tandem affinity purification-MS

FRET:

Fluorescence resonance energy transfer

AP-MS:

Affinity purification-MS

DNA:

Deoxyribonucleic acid

NR:

Non-reducing

R:

Reducing

IgG:

Immunoglobulin G

AUC:

Analytical ultracentrifugation

SEC:

Size exclusion chromatography

IEF:

Isoelectric focusing

EM:

Electron microscope

CAD:

Collision-activated dissociation

ECD:

Electron capture dissociation

ETD:

Electron transfer dissociation

DESI:

Desorption-ESI

TNF-α:

Tumor necrosis factor alpha

ICP-MS:

Inductively coupled plasma-MS

IP:

Immunoprecipitation

IMS-MS:

Ion mobility spectrometer-MS

References

  1. Alberts B (1998) The cell as a collection of protein machines: preparing the next generation of molecular biologists. Cell 92(3):291–294

    CAS  PubMed  Google Scholar 

  2. Paul FE, Hosp F, Selbach M (2011) Analyzing protein–protein interactions by quantitative mass spectrometry. Methods 54(4):387–395

    CAS  PubMed  Google Scholar 

  3. Grigoriev A (2003) On the number of protein–protein interactions in the yeast proteome. Nucleic Acids Res 31(14):4157–4161

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Kerrien S et al (2007) IntAct–open source resource for molecular interaction data. Nucleic Acids Res 35:D561–D565 Database issue

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Byrum S et al (2012) Analysis of stable and transient protein–protein interactions. Methods Mol Biol 833:143–152

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Sadrzadeh SM, Bozorgmehr J (2004) Haptoglobin phenotypes in health and disorders. Am J Clin Pathol 121(Suppl):S97–S104

    PubMed  Google Scholar 

  7. Bashor CJ et al (2010) Rewiring cells: synthetic biology as a tool to interrogate the organizational principles of living systems. Annu Rev Biophys 39:515–537

    CAS  PubMed Central  PubMed  Google Scholar 

  8. McNally FJ, Vale RD (1993) Identification of katanin, an ATPase that severs and disassembles stable microtubules. Cell 75(3):419–429

    CAS  PubMed  Google Scholar 

  9. Dutcher SK (2001) The tubulin fraternity: alpha to eta. Curr Opin Cell Biol 13(1):49–54

    CAS  PubMed  Google Scholar 

  10. Hemmerich P, Schmiedeberg L, Diekmann S (2011) Dynamic as well as stable protein interactions contribute to genome function and maintenance. Chromosome Res 19(1):131–151

    CAS  PubMed Central  PubMed  Google Scholar 

  11. DeLano WL (2002) Unraveling hot spots in binding interfaces: progress and challenges. Curr Opin Struct Biol 12(1):14–20

    CAS  PubMed  Google Scholar 

  12. Krylov D, Mikhailenko I, Vinson C (1994) A thermodynamic scale for leucine zipper stability and dimerization specificity: e and g interhelical interactions. EMBO J 13(12):2849–2861

    CAS  PubMed  Google Scholar 

  13. Schreiber G, Haran G, Zhou HX (2009) Fundamental aspects of protein–protein association kinetics. Chem Rev 109(3):839–860

    CAS  PubMed  Google Scholar 

  14. Pawson T (1995) Protein modules and signalling networks. Nature 373(6515):573–580

    CAS  PubMed  Google Scholar 

  15. Pellegrini M, Haynor D, Johnson JM (2004) Protein interaction networks. Expert Rev Proteomics 1(2):239–249

    CAS  PubMed  Google Scholar 

  16. Terentiev AA, Moldogazieva NT, Shaitan KV (2009) Dynamic proteomics in modeling of the living cell. Protein–protein interactions. Biochemistry (Mosc) 74(13):1586–1607

    CAS  Google Scholar 

  17. Gavin AC, Maeda K, Kuhner S (2011) Recent advances in charting protein–protein interaction: mass spectrometry-based approaches. Curr Opin Biotechnol 22(1):42–49

    CAS  PubMed  Google Scholar 

  18. Walhout AJ, Boulton SJ, Vidal M (2000) Yeast two-hybrid systems and protein interaction mapping projects for yeast and worm. Yeast 17(2):88–94

    CAS  PubMed  Google Scholar 

  19. Walhout AJ et al (2000) Protein interaction mapping in C. elegans using proteins involved in vulval development. Science 287(5450):116–122

    CAS  PubMed  Google Scholar 

  20. Giot L et al (2003) A protein interaction map of Drosophila melanogaster. Science 302(5651):1727–1736

    CAS  PubMed  Google Scholar 

  21. Uetz P et al (2000) A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae. Nature 403(6770):623–627

    CAS  PubMed  Google Scholar 

  22. Li S et al (2004) A map of the interactome network of the metazoan C. elegans. Science 303(5657):540–543

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Rual JF et al (2005) Towards a proteome-scale map of the human protein–protein interaction network. Nature 437(7062):1173–1178

    CAS  PubMed  Google Scholar 

  24. Gavin AC et al (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415(6868):141–147

    CAS  PubMed  Google Scholar 

  25. Ho Y et al (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415(6868):180–183

    CAS  PubMed  Google Scholar 

  26. Boehr DD, Wright PE (2008) Biochemistry. How do proteins interact? Science 320(5882):1429–1430

    CAS  PubMed  Google Scholar 

  27. Sugase K, Dyson HJ, Wright PE (2007) Mechanism of coupled folding and binding of an intrinsically disordered protein. Nature 447(7147):1021–1025

    CAS  PubMed  Google Scholar 

  28. Sardiu ME, Washburn MP (2011) Building protein–protein interaction networks with proteomics and informatics tools. J Biol Chem 286(27):23645–23651

    CAS  PubMed  Google Scholar 

  29. Sanderson CM (2008) A new way to explore the world of extracellular protein interactions. Genome Res 18(4):517–520

    CAS  PubMed  Google Scholar 

  30. Bushell KM et al (2008) Large-scale screening for novel low-affinity extracellular protein interactions. Genome Res 18(4):622–630

    CAS  PubMed  Google Scholar 

  31. Futschik ME, Chaurasia G, Herzel H (2007) Comparison of human protein–protein interaction maps. Bioinformatics 23(5):605–611

    CAS  PubMed  Google Scholar 

  32. Ito T et al (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci USA 98(8):4569–4574

    CAS  PubMed  Google Scholar 

  33. von Mering C et al (2002) Comparative assessment of large-scale data sets of protein–protein interactions. Nature 417(6887):399–403

    Google Scholar 

  34. Mika S, Rost B (2006) Protein–protein interactions more conserved within species than across species. PLoS Comput Biol 2(7):e79

    PubMed Central  PubMed  Google Scholar 

  35. Frech C et al (2009) Improved homology-driven computational validation of protein–protein interactions motivated by the evolutionary gene duplication and divergence hypothesis. BMC Bioinformatics 10:21

    PubMed Central  PubMed  Google Scholar 

  36. Iwabuchi K et al (1993) Use of the two-hybrid system to identify the domain of p53 involved in oligomerization. Oncogene 8(6):1693–1696

    CAS  PubMed  Google Scholar 

  37. Fields S, Song O (1989) A novel genetic system to detect protein–protein interactions. Nature 340(6230):245–246

    CAS  PubMed  Google Scholar 

  38. Sprinzak E, Sattath S, Margalit H (2003) How reliable are experimental protein–protein interaction data? J Mol Biol 327(5):919–923

    CAS  PubMed  Google Scholar 

  39. Overington JP, Al-Lazikani B, Hopkins AL (2006) How many drug targets are there? Nat Rev Drug Discov 5(12):993–996

    CAS  PubMed  Google Scholar 

  40. Hamdi A, Colas P (2012) Yeast two-hybrid methods and their applications in drug discovery. Trends Pharmacol Sci 33(2):109–118

    CAS  PubMed  Google Scholar 

  41. Zhang Y, Gao P, Yuan JS (2010) Plant protein–protein interaction network and interactome. Curr Genomics 11(1):40–46

    CAS  PubMed  Google Scholar 

  42. Gisler SM et al (2008) Monitoring protein–protein interactions between the mammalian integral membrane transporters and PDZ-interacting partners using a modified split-ubiquitin membrane yeast two-hybrid system. Mol Cell Proteomics 7(7):1362–1377

    CAS  PubMed  Google Scholar 

  43. Snider J et al (2010) Detecting interactions with membrane proteins using a membrane two-hybrid assay in yeast. Nat Protoc 5(7):1281–1293

    CAS  PubMed  Google Scholar 

  44. Stagljar I et al (1998) A genetic system based on split-ubiquitin for the analysis of interactions between membrane proteins in vivo. Proc Natl Acad Sci USA 95(9):5187–5192

    CAS  PubMed  Google Scholar 

  45. Petschnigg J, Snider J, Stagljar I (2011) Interactive proteomics research technologies: recent applications and advances. Curr Opin Biotechnol 22(1):50–58

    CAS  PubMed  Google Scholar 

  46. Johnsson N, Varshavsky A (1994) Split ubiquitin as a sensor of protein interactions in vivo. Proc Natl Acad Sci USA 91(22):10340–10344

    CAS  PubMed  Google Scholar 

  47. Broder YC, Katz S, Aronheim A (1998) The ras recruitment system, a novel approach to the study of protein–protein interactions. Curr Biol 8(20):1121–1124

    CAS  PubMed  Google Scholar 

  48. Egea-Cortines M, Saedler H, Sommer H (1999) Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. EMBO J 18(19):5370–5379

    CAS  PubMed  Google Scholar 

  49. Brent R, Finley RL Jr (1997) Understanding gene and allele function with two-hybrid methods. Annu Rev Genet 31:663–704

    CAS  PubMed  Google Scholar 

  50. Serebriiskii IG et al (2001) Two-hybrid dual bait system to discriminate specificity of protein interactions in small GTPases. Methods Enzymol 332:277–300

    CAS  PubMed  Google Scholar 

  51. Causier B, Davies B (2002) Analysing protein–protein interactions with the yeast two-hybrid system. Plant Mol Biol 50(6):855–870

    CAS  PubMed  Google Scholar 

  52. Dube DH et al (2010) A two-hybrid assay to study protein interactions within the secretory pathway. PLoS One 5(12):e15648

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Pollock S et al (2004) Specific interaction of ERp57 and calnexin determined by NMR spectroscopy and an ER two-hybrid system. EMBO J 23(5):1020–1029

    CAS  PubMed  Google Scholar 

  54. Monti M et al (2005) Interaction proteomics. Biosci Rep 25(1–2):45–56

    CAS  PubMed  Google Scholar 

  55. Phee BK et al (2006) Identification of phytochrome-interacting protein candidates in Arabidopsis thaliana by co-immunoprecipitation coupled with MALDI-TOF MS. Proteomics 6(12):3671–3680

    CAS  PubMed  Google Scholar 

  56. Ren L et al (2003) Improved immunomatrix methods to detect protein:protein interactions. J Biochem Biophys Methods 57(2):143–157

    CAS  PubMed  Google Scholar 

  57. Miernyk JA, Thelen JJ (2008) Biochemical approaches for discovering protein–protein interactions. Plant J 53(4):597–609

    CAS  PubMed  Google Scholar 

  58. Forler D et al (2003) An efficient protein complex purification method for functional proteomics in higher eukaryotes. Nat Biotechnol 21(1):89–92

    CAS  PubMed  Google Scholar 

  59. Rigaut G et al (1999) A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol 17(10):1030–1032

    CAS  PubMed  Google Scholar 

  60. Smirle J et al (2013) Cell biology of the endoplasmic reticulum and the Golgi apparatus through proteomics. Cold Spring Harb Perspect Biol 5(1):a015073. doi:10.1101/cshperspect.a015073

    PubMed  Google Scholar 

  61. Jansen G et al (2012) An interaction map of endoplasmic reticulum chaperones and foldases. Mol Cell Proteomics 11(9):710–723

    CAS  PubMed  Google Scholar 

  62. Gingras AC et al (2007) Analysis of protein complexes using mass spectrometry. Nat Rev Mol Cell Biol 8(8):645–654

    CAS  PubMed  Google Scholar 

  63. Back JW et al (2003) Chemical cross-linking and mass spectrometry for protein structural modeling. J Mol Biol 331(2):303–313

    CAS  PubMed  Google Scholar 

  64. Berkowitz SA (2006) Role of analytical ultracentrifugation in assessing the aggregation of protein biopharmaceuticals. AAPS J 8(3):E590–E605

    CAS  PubMed  Google Scholar 

  65. Philo JS (2006) Is any measurement method optimal for all aggregate sizes and types? AAPS J 8(3):E564–E571

    CAS  PubMed  Google Scholar 

  66. Liu J, Andya JD, Shire SJ (2006) A critical review of analytical ultracentrifugation and field flow fractionation methods for measuring protein aggregation. AAPS J 8(3):E580–E589

    CAS  PubMed  Google Scholar 

  67. Perkins SJ et al (2011) Analytical ultracentrifugation combined with X-ray and neutron scattering: experiment and modelling. Methods 54(1):181–199

    CAS  PubMed  Google Scholar 

  68. Howlett GJ, Minton AP, Rivas G (2006) Analytical ultracentrifugation for the study of protein association and assembly. Curr Opin Chem Biol 10(5):430–436

    CAS  PubMed  Google Scholar 

  69. Minton AP (2000) Quantitative characterization of reversible macromolecular associations via sedimentation equilibrium: an introduction. Exp Mol Med 32(1):1–5

    CAS  PubMed  Google Scholar 

  70. Dam J, Schuck P (2004) Calculating sedimentation coefficient distributions by direct modeling of sedimentation velocity concentration profiles. Methods Enzymol 384:185–212

    CAS  PubMed  Google Scholar 

  71. Cole JL, Correia JJ, Stafford WF (2011) The use of analytical sedimentation velocity to extract thermodynamic linkage. Biophys Chem 159(1):120–128

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Correia JJ (2000) Analysis of weight average sedimentation velocity data. Methods Enzymol 321:81–100

    CAS  PubMed  Google Scholar 

  73. Cole JL (2010) Analysis of PKR activation using analytical ultracentrifugation. Macromol Biosci 10(7):703–713

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Vistica J et al (2004) Sedimentation equilibrium analysis of protein interactions with global implicit mass conservation constraints and systematic noise decomposition. Anal Biochem 326(2):234–256

    CAS  PubMed  Google Scholar 

  75. Ghirlando R (2011) The analysis of macromolecular interactions by sedimentation equilibrium. Methods 54(1):145–156

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Brautigam CA (2011) Using Lamm-Equation modeling of sedimentation velocity data to determine the kinetic and thermodynamic properties of macromolecular interactions. Methods 54(1):4–15

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Darie CC et al (2011) Identifying transient protein–protein interactions in EphB2 signaling by blue native PAGE and mass spectrometry. Proteomics 11(23):4514–4528

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Miyashita T (2004) Confocal microscopy for intracellular co-localization of proteins. Methods Mol Biol 261:399–410

    CAS  PubMed  Google Scholar 

  79. Weiss S (1999) Fluorescence spectroscopy of single biomolecules. Science 283(5408):1676–1683

    CAS  PubMed  Google Scholar 

  80. Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544

    CAS  PubMed  Google Scholar 

  81. Zacharias DA, Baird GS, Tsien RY (2000) Recent advances in technology for measuring and manipulating cell signals. Curr Opin Neurobiol 10(3):416–421

    CAS  PubMed  Google Scholar 

  82. Egger MD, Petran M (1967) New reflected-light microscope for viewing unstained brain and ganglion cells. Science 157(3786):305–307

    CAS  PubMed  Google Scholar 

  83. Davidovits P, Egger MD (1973) Photomicrography of corneal endothelial cells in vivo. Nature 244(5415):366–367

    CAS  PubMed  Google Scholar 

  84. Amos WB, White JG (2003) How the confocal laser scanning microscope entered biological research. Biol Cell 95(6):335–342

    CAS  PubMed  Google Scholar 

  85. Sheppard CJ, Wilson T (1979) Effect of spherical aberration on the imaging properties of scanning optical microscopes. Appl Opt 18(7):1058–1063

    CAS  PubMed  Google Scholar 

  86. Berggard T, Linse S, James P (2007) Methods for the detection and analysis of protein–protein interactions. Proteomics 7(16):2833–2842

    PubMed  Google Scholar 

  87. Willander M, Al-Hilli S (2009) Analysis of biomolecules using surface plasmons. Methods Mol Biol 544:201–229

    CAS  PubMed  Google Scholar 

  88. Liang Y (2008) Applications of isothermal titration calorimetry in protein science. Acta Biochim Biophys Sin (Shanghai) 40(7):565–576

    CAS  Google Scholar 

  89. Falconer RJ, Collins BM (2011) Survey of the year 2009: applications of isothermal titration calorimetry. J Mol Recognit 24(1):1–16

    CAS  PubMed  Google Scholar 

  90. Huber W, Mueller F (2006) Biomolecular interaction analysis in drug discovery using surface plasmon resonance technology. Curr Pharm Des 12(31):3999–4021

    CAS  PubMed  Google Scholar 

  91. Bloustine J, Berejnov V, Fraden S (2003) Measurements of protein–protein interactions by size exclusion chromatography. Biophys J 85(4):2619–2623

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Mayer CL et al (2009) Size-exclusion chromatography can identify faster-associating protein complexes and evaluate design strategies. BMC Res Notes 2:135

    PubMed Central  PubMed  Google Scholar 

  93. Hanlon AD, Larkin MI, Reddick RM (2010) Free-solution, label-free protein–protein interactions characterized by dynamic light scattering. Biophys J 98(2):297–304

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Kameyama K, Minton AP (2006) Rapid quantitative characterization of protein interactions by composition gradient static light scattering. Biophys J 90(6):2164–2169

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Zuiderweg ER (2002) Mapping protein–protein interactions in solution by NMR spectroscopy. Biochemistry 41(1):1–7

    CAS  PubMed  Google Scholar 

  96. O’Connell MR, Gamsjaeger R, Mackay JP (2009) The structural analysis of protein–protein interactions by NMR spectroscopy. Proteomics 9(23):5224–5232

    PubMed  Google Scholar 

  97. Arnold K et al (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22(2):195–201

    CAS  PubMed  Google Scholar 

  98. Eswar N et al (2006) Comparative protein structure modeling using Modeller. Curr Protoc Bioinformatics Chapter 5: p. Unit 5.6

  99. Accelrys_Software_Inc (2012) Discovery Studio Modeling Environment, Release 3.1, San Diego. Accelrys Software Inc. 1: p 1–1

  100. Kim DE, Chivian D, Baker D (2004) Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res 32:W526–W531 Web Server issue

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5(4):725–738

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Moult J et al (2011) Critical assessment of methods of protein structure prediction (CASP)–round IX. Proteins 79(Suppl 10):1–5

    CAS  PubMed  Google Scholar 

  103. Wishart DS (2005) Bioinformatics in drug development and assessment. Drug Metab Rev 37(2):279–310

    CAS  PubMed  Google Scholar 

  104. Roy U et al (2012) Structural Investigation of Tumor Differentiation Factor (TDF). Biotechnol Appl Biochem 59(6):445–450

    CAS  PubMed  Google Scholar 

  105. Sokolowska I et al (2012) Identification of a potential tumor differentiation factor receptor candidate in prostate cancer cells. FEBS J 279(14):2579–2594

    CAS  PubMed  Google Scholar 

  106. Sokolowska I et al (2012) Identification of potential tumor differentiation factor (TDF) receptor from steroid-responsive and steroid-resistant breast cancer cells. J Biol Chem 287(3):1719–1733

    CAS  PubMed  Google Scholar 

  107. Sokolowska I et al (2012) Characterization of Tumor Differentiation Factor (TDF) and its receptor (TDF-R) Cell Mol Life Sci. doi:10.1007/s00018-012-1185-0

  108. Sokolowska I et al (2011) Mass Spectrometry for Proteomics-based Investigation of Oxidative Stress and Heat Shock Proteins, In Oxidative Stress: Diagnostics and Therapy

  109. Maiti R et al (2004) SuperPose: a simple server for sophisticated structural superposition. Nucleic Acids Res 32:W590–W594 Web Server issue

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Tovchigrechko A, Vakser IA (2005) Development and testing of an automated approach to protein docking. Proteins 60(2):296–301

    CAS  PubMed  Google Scholar 

  111. Tovchigrechko A, Vakser IA (2006) GRAMM-X public web server for protein–protein docking. Nucleic Acids Res 34:W310–W314 Web Server issue

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Andrusier N, Nussinov R, Wolfson HJ (2007) FireDock: fast interaction refinement in molecular docking. Proteins 69(1):139–159

    CAS  PubMed  Google Scholar 

  113. Mashiach E et al (2008) FireDock: a web server for fast interaction refinement in molecular docking. Nucleic Acids Res 36:W229–W232 Web Server issue

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Schneidman-Duhovny D et al (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 33:W363–W367 Web Server issue

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Duhovny D, Nussinov R, and Wolfson HJ (2002) Efficient unbound docking of rigid molecules. In: Proceedings of the 2’nd workshop on algorithms in bioinformatics (WABI) lecture notes in computer science Rome, Italy: Springer Verlag

  116. Gallivan JP, Dougherty DA (1999) Cation-pi interactions in structural biology. Proc Natl Acad Sci USA 96(17):9459–9464

    CAS  PubMed  Google Scholar 

  117. da Huang W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57

    CAS  Google Scholar 

  118. Carmona-Saez P et al (2007) GENECODIS: a web-based tool for finding significant concurrent annotations in gene lists. Genome Biol 8(1):R3

    PubMed Central  PubMed  Google Scholar 

  119. Kanehisa M et al (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40:D109–D114 Database issue

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Moriya Y et al (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35:W182–W185 Web Server issue

    PubMed Central  PubMed  Google Scholar 

  121. Xenarios I et al (2002) DIP, the database of interacting proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Res 30(1):303–305

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Licata L et al (2012) MINT, the molecular interaction database: 2012 update. Nucleic Acids Res 40:D857–D861 Database issue

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Kerrien S et al (2012) The intact molecular interaction database in 2012. Nucleic Acids Res 40:D841–D846 Database issue

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Pagel P et al (2005) The MIPS mammalian protein–protein interaction database. Bioinformatics 21(6):832–834

    CAS  PubMed  Google Scholar 

  125. Szklarczyk D et al (2011) The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 39:D561–D568 Database issue

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Keshava Prasad TS et al (2009) Human protein reference database–2009 update. Nucleic Acids Res 37:D767–D772 Database issue

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Smoot ME et al (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27(3):431–432

    CAS  PubMed  Google Scholar 

  128. Darie CC et al (2004) Structural characterization of fish egg vitelline envelope proteins by mass spectrometry. Biochemistry 43(23):7459–7478

    CAS  PubMed  Google Scholar 

  129. Sokolowska I et al (2012) Disulfide proteomics for identification of extracellular or secreted proteins. Electrophoresis 33(16):2527–2536

    CAS  PubMed  Google Scholar 

  130. Allister L et al (2011) Serum markers in acute appendicitis. J Surg Res 168(1):70–75

    CAS  PubMed  Google Scholar 

  131. Huang YC et al (2011) Increased prothrombin, apolipoprotein A-IV, and haptoglobin in the cerebrospinal fluid of patients with Huntington’s disease. PLoS One 6(1):e15809

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Jin T et al (2007) Proteomic identification of potential protein markers in cerebrospinal fluid of GBS patients. Eur J Neurol 14(5):563–568

    CAS  PubMed  Google Scholar 

  133. Varghese SA et al (2007) Urine biomarkers predict the cause of glomerular disease. J Am Soc Nephrol 18(3):913–922

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Woods AG et al (2011) Blue Native PAGE and mass spectrometry as an approach for the investigation of stable and transient protein–protein interactions, In Oxidative Stress: Diagnostics and Therapy

  135. Ngounou Wetie AG et al (2013) Automated Mass Spectrometry-Based Functional Assay for the Routine Analysis of the Secretome. J Lab Autom 18(1):19–29. doi:10.1177/2211068212454738

  136. Brown JR, Hartley BS (1966) Location of the disulphide bridges by diagonal paper electrophoresis. Biochem J 101:214–228

    CAS  PubMed  Google Scholar 

  137. McDonagh B (2009) Diagonal electrophoresis for detection of protein disulphide bridges. Methods Mol Biol 519:305–310

    CAS  PubMed  Google Scholar 

  138. Samelson LE (2001) Diagonal gel electrophoresis. Curr Protoc Immunol Chapter 8: p Unit 8.6

  139. Darie CC et al (2005) Mass spectrometric evidence that proteolytic processing of rainbow trout egg vitelline envelope proteins takes place on the egg. J Biol Chem 280(45):37585–37598

    CAS  PubMed  Google Scholar 

  140. Spellman DS et al (2008) Stable isotopic labeling by amino acids in cultured primary neurons: application to brain-derived neurotrophic factor-dependent phosphotyrosine-associated signaling. Mol Cell Proteomics 7(6):1067–1076

    CAS  PubMed  Google Scholar 

  141. Jovine L et al (2005) Zona pellucida domain proteins. Annu Rev Biochem 74:83–114

    CAS  PubMed  Google Scholar 

  142. Litscher ES et al (2008) Purified mouse egg zona pellucida glycoproteins polymerize into homomeric fibrils under non-denaturing conditions. J Cell Physiol 214(1):153–157

    CAS  PubMed  Google Scholar 

  143. Wassarman PM et al (2005) Recent aspects of mammalian fertilization research. Mol Cell Endocrinol 234(1–2):95–103

    CAS  PubMed  Google Scholar 

  144. Darie CC, Litscher ES, Wassarman PM (2008) Structure, processing, and polymerization of rainbow trout egg vitelline envelope proteins. Applications of Mass Spectrometry in Life Safety, NATO Science for Peace and Security Series, Springer-Verlag, Düsseldorf, Germany pp 23–36

  145. Schagger H, von Jagow G (1991) Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal Biochem 199(2):223–231

    CAS  PubMed  Google Scholar 

  146. Schagger H, Cramer WA, von Jagow G (1994) Analysis of molecular masses and oligomeric states of protein complexes by blue native electrophoresis and isolation of membrane protein complexes by two-dimensional native electrophoresis. Anal Biochem 217(2):220–230

    CAS  PubMed  Google Scholar 

  147. Schagger H (1995) Native electrophoresis for isolation of mitochondrial oxidative phosphorylation protein complexes. Methods Enzymol 260:190–202

    CAS  PubMed  Google Scholar 

  148. Millar AH et al (2004) Mitochondrial cytochrome c oxidase and succinate dehydrogenase complexes contain plant specific subunits. Plant Mol Biol 56(1):77–90

    CAS  PubMed  Google Scholar 

  149. Winger AM et al (2007) The Cytotoxic lipid peroxidation product 4-hydroxy-2-nonenal covalently modifies a selective range of proteins linked to respiratory function in plant mitochondria. J Biol Chem 282(52):37436–37447

    CAS  PubMed  Google Scholar 

  150. Schilling B et al (2005) Rapid purification and mass spectrometric characterization of mitochondrial NADH dehydrogenase (Complex I) from rodent brain and a dopaminergic neuronal cell line. Mol Cell Proteomics 4(1):84–96

    CAS  PubMed  Google Scholar 

  151. Nakamura M et al (2009) Proteomic analysis of protein complexes in human SH-SY5Y neuroblastoma cells by using blue-native gel electrophoresis: an increase in lamin A/C associated with heat shock protein 90 in response to 6-hydroxydopamine-induced oxidative stress. Exp Gerontol 44(6–7):375–382

    CAS  PubMed  Google Scholar 

  152. Ladig R et al (2011) A high-definition native polyacrylamide gel electrophoresis system for the analysis of membrane complexes. Plant J 67(1):181–194. doi:10.1111/j.1365-313X.2011.04577

    Google Scholar 

  153. Peng Y et al (2011) A blue native-PAGE analysis of membrane protein complexes in Clostridium thermocellum. BMC Microbiol 11(1):22

    CAS  PubMed Central  PubMed  Google Scholar 

  154. Wessels HJ et al (2009) LC-MS/MS as an alternative for SDS-PAGE in blue native analysis of protein complexes. Proteomics 9(17):4221–4228

    CAS  PubMed  Google Scholar 

  155. Meng B et al (2009) Proteomic analysis on the temperature-dependent complexes in Thermoanaerobacter tengcongensis. Proteomics 9(11):3189–3200

    CAS  PubMed  Google Scholar 

  156. Sanders PR et al (2007) Identification of protein complexes in detergent-resistant membranes of Plasmodium falciparum schizonts. Mol Biochem Parasitol 154(2):148–157

    CAS  PubMed  Google Scholar 

  157. Pyndiah S et al (2007) Two-dimensional blue native/SDS gel electrophoresis of multiprotein complexes from Helicobacter pylori. Mol Cell Proteomics 6(2):193–206

    CAS  PubMed  Google Scholar 

  158. Camacho-Carvajal MM et al (2004) Two-dimensional Blue native/SDS gel electrophoresis of multi-protein complexes from whole cellular lysates: a proteomics approach. Mol Cell Proteomics 3(2):176–182

    CAS  PubMed  Google Scholar 

  159. Nijtmans LG, Henderson NS, Holt IJ (2002) Blue Native electrophoresis to study mitochondrial and other protein complexes. Methods 26(4):327–334

    CAS  PubMed  Google Scholar 

  160. Darie CC et al (2006) Studies of the Ndh complex and photosystem II from mesophyll and bundle sheath chloroplasts of the C4-type plant Zea mays. J Plant Physiol 163(8):800–808

    CAS  PubMed  Google Scholar 

  161. Darie CC et al (2005) Isolation and structural characterization of the Ndh complex from mesophyll and bundle sheath chloroplasts of Zea mays. FEBS J 272(11):2705–2716

    CAS  PubMed  Google Scholar 

  162. Prommeenate P et al (2004) Subunit composition of NDH-1 complexes of Synechocystis sp. PCC 6803: identification of two new ndh gene products with nuclear-encoded homologues in the chloroplast Ndh complex. J Biol Chem 279(27):28165–28173

    CAS  PubMed  Google Scholar 

  163. Joet T et al (2002) Cyclic electron flow around photosystem I in C(3) plants. In vivo control by the redox state of chloroplasts and involvement of the NADH-dehydrogenase complex. Plant Physiol 128(2):760–769

    CAS  PubMed Central  PubMed  Google Scholar 

  164. Casano LM et al (2000) Chlororespiration and poising of cyclic electron transport. Plastoquinone as electron transporter between thylakoid NADH dehydrogenase and peroxidase. J Biol Chem 275(2):942–948

    CAS  PubMed  Google Scholar 

  165. Sazanov LA, Burrows PA, Nixon PJ (1998) The chloroplast Ndh complex mediates the dark reduction of the plastoquinone pool in response to heat stress in tobacco leaves. FEBS Lett 429(1):115–118

    CAS  PubMed  Google Scholar 

  166. Catala R, Sabater B, Guera A (1997) Expression of the plastid ndhF gene product in photosynthetic and non-photosynthetic tissues of developing barley seedlings. Plant Cell Physiol 38(12):1382–1388

    CAS  PubMed  Google Scholar 

  167. Burrows PA et al (1998) Identification of a functional respiratory complex in chloroplasts through analysis of tobacco mutants containing disrupted plastid ndh genes. EMBO J 17(4):868–876

    CAS  PubMed  Google Scholar 

  168. Sazanov LA, Burrows PA, Nixon PJ (1998) The plastid ndh genes code for an NADH-specific dehydrogenase: isolation of a complex I analogue from pea thylakoid membranes. Proc Natl Acad Sci USA 95(3):1319–1324

    CAS  PubMed  Google Scholar 

  169. Guedeney G et al (1996) Evidence for an association of ndh B, ndh J gene products and ferredoxin-NADP-reductase as components of a chloroplastic NAD(P)H dehydrogenase complex. FEBS Lett 378(3):277–280

    CAS  PubMed  Google Scholar 

  170. Lu L, Komada M, Kitamura N (1998) Human Hrs, a tyrosine kinase substrate in growth factor-stimulated cells: cDNA cloning and mapping of the gene to chromosome 17. Gene 213(1–2):125–132

    CAS  PubMed  Google Scholar 

  171. Kobayashi H et al (2005) Hrs, a mammalian master molecule in vesicular transport and protein sorting, suppresses the degradation of ESCRT proteins signal transducing adaptor molecule 1 and 2. J Biol Chem 280(11):10468–10477

    CAS  PubMed  Google Scholar 

  172. DeLaBarre B, Brunger AT (2003) Complete structure of p97/valosin-containing protein reveals communication between nucleotide domains. Nat Struct Biol 10(10):856–863

    CAS  PubMed  Google Scholar 

  173. McNaught KS et al (2001) Failure of the ubiquitin-proteasome system in Parkinson’s disease. Nat Rev Neurosci 2(8):589–594

    CAS  PubMed  Google Scholar 

  174. Brown MG, Monaco JJ (1993) Biochemical purification of distinct proteasome subsets. Enzyme Protein 47(4–6):343–353

    CAS  PubMed  Google Scholar 

  175. Hendil KB et al (1993) Subunit stoichiometry of human proteasomes. Enzyme Protein 47(4–6):232–240

    CAS  PubMed  Google Scholar 

  176. Seelig A, Boes B, Kloetzel PM (1993) Characterization of mouse proteasome subunit MC3 and identification of proteasome subtypes with different cleavage characteristics. Proteasome subunits, proteasome subpopulations. Enzyme Protein 47(4–6):330–342

    CAS  PubMed  Google Scholar 

  177. Hendil KB, Kristensen P, Uerkvitz W (1995) Human proteasomes analysed with monoclonal antibodies. Biochem J 305(Pt 1):245–252

    CAS  PubMed  Google Scholar 

  178. Akaishi T et al (1996) Purification and properties of the 26S proteasome from the rat brain: evidence for its degradation of myelin basic protein in a ubiquitin-dependent manner. Brain Res 722(1–2):139–144

    CAS  PubMed  Google Scholar 

  179. Henry L et al (1997) Proteasome (prosome) subunit variations during the differentiation of myeloid U937 cells. Anal Cell Pathol 15(3):131–144

    CAS  PubMed  Google Scholar 

  180. Seeger M, Ferrell K, Dubiel W (1997) The 26S proteasome: a dynamic structure. Mol Biol Rep 24(1–2):83–88

    CAS  PubMed  Google Scholar 

  181. Wang X et al (2007) Mass spectrometric characterization of the affinity-purified human 26S proteasome complex. Biochemistry 46(11):3553–3565

    CAS  PubMed  Google Scholar 

  182. Yu Y et al (2005) Mass spectrometric analysis of the human 40S ribosomal subunit: native and HCV IRES-bound complexes. Protein Sci 14(6):1438–1446

    CAS  PubMed  Google Scholar 

  183. Damoc E et al (2007) Structural characterization of the human eukaryotic initiation factor 3 protein complex by mass spectrometry. Mol Cell Proteomics 6(7):1135–1146

    CAS  PubMed  Google Scholar 

  184. Fogli A et al (2006) Peptidomics and proteomics studies of transformed lymphocytes from patients mutated for the eukaryotic initiation factor 2B. J Chromatogr B Analyt Technol Biomed Life Sci 840(1):20–28

    CAS  PubMed  Google Scholar 

  185. Sanders SL et al (2002) Proteomics of the eukaryotic transcription machinery: identification of proteins associated with components of yeast TFIID by multidimensional mass spectrometry. Mol Cell Biol 22(13):4723–4738

    CAS  PubMed Central  PubMed  Google Scholar 

  186. Zhou M et al (2008) Mass spectrometry reveals modularity and a complete subunit interaction map of the eukaryotic translation factor eIF3. Proc Natl Acad Sci USA 105(47):18139–18144

    CAS  PubMed  Google Scholar 

  187. Darie CC et al (2008) Purified trout egg vitelline envelope proteins VEbeta and VEgamma polymerize into homomeric fibrils from dimers in vitro. Biochim Biophys Acta 1784(2):385–392

    CAS  PubMed  Google Scholar 

  188. Neff D, Dencher NA (1999) Purification of multisubunit membrane protein complexes: isolation of chloroplast FoF1-ATP synthase, CF0 and CF1 by blue native electrophoresis. Biochem Biophys Res Commun 259(3):569–575

    CAS  PubMed  Google Scholar 

  189. Dejgaard K et al (2010) Organization of the Sec61 translocon, studied by high resolution native electrophoresis. J Proteome Res 9(4):1763–1771

    CAS  PubMed  Google Scholar 

  190. Wittig I, Schagger H (2005) Advantages and limitations of clear-native PAGE. Proteomics 5(17):4338–4346

    CAS  PubMed  Google Scholar 

  191. Krause F et al (2005) Active oligomeric ATP synthases in mammalian mitochondria. Biochem Biophys Res Commun 329(2):583–590

    CAS  PubMed  Google Scholar 

  192. Pfeiffer K et al (2003) Cardiolipin stabilizes respiratory chain supercomplexes. J Biol Chem 278(52):52873–52880

    CAS  PubMed  Google Scholar 

  193. Grandier-Vazeille X, Guerin M (1996) Separation by blue native and colorless native polyacrylamide gel electrophoresis of the oxidative phosphorylation complexes of yeast mitochondria solubilized by different detergents: specific staining of the different complexes. Anal Biochem 242(2):248–254

    CAS  PubMed  Google Scholar 

  194. Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422(6928):198–207

    CAS  PubMed  Google Scholar 

  195. Domon B, Aebersold R (2006) Mass spectrometry and protein analysis. Science 312(5771):212–217

    CAS  PubMed  Google Scholar 

  196. Woods AG et al (2012) Mass spectrometry as a tool for studying autism spectrum disorder. J Mol Psychiatry (in press)

  197. Woods AG, Sokolowska I, Darie CC (2012) Identification of consistent alkylation of cysteine-less peptides in a proteomics experiment. Biochem Biophys Res Commun 419(2):305–308

    CAS  PubMed  Google Scholar 

  198. Sokolowska I et al (2012) Proteomic analysis of plasma membranes isolated from undifferentiated and differentiated HepaRG cells. Proteome Sci 10(1):47

    CAS  PubMed Central  PubMed  Google Scholar 

  199. Woods AG et al (2012) Potential biomarkers in psychiatry: focus on the cholesterol system. J Cell Mol Med 16(6):1184–1195

    CAS  PubMed  Google Scholar 

  200. Xie F et al (2011) Liquid chromatography-mass spectrometry-based quantitative proteomics. J Biol Chem 286(29):25443–25449

    CAS  PubMed  Google Scholar 

  201. Mortz E et al (1996) Sequence tag identification of intact proteins by matching tandem mass spectral data against sequence data bases. Proc Natl Acad Sci USA 93(16):8264–8267

    CAS  PubMed  Google Scholar 

  202. Mortz E et al (1996) Mass spectrometric characterization of glycosylated interferon-gamma variants separated by gel electrophoresis. Electrophoresis 17(5):925–931

    CAS  PubMed  Google Scholar 

  203. Mortz E et al (1996) Does matrix-assisted laser desorption/ionization mass spectrometry allow analysis of carbohydrate heterogeneity in glycoproteins? A study of natural human interferon-gamma. J Mass Spectrom 31(10):1109–1118

    CAS  PubMed  Google Scholar 

  204. Forbes AJ et al (2001) Toward efficient analysis of >70 kDa proteins with 100% sequence coverage. Proteomics 1(8):927–933

    CAS  PubMed  Google Scholar 

  205. Ge Y et al (2002) Top down characterization of larger proteins (45 kDa) by electron capture dissociation mass spectrometry. J Am Chem Soc 124(4):672–678

    CAS  PubMed  Google Scholar 

  206. Smith RD et al (2002) An accurate mass tag strategy for quantitative and high-throughput proteome measurements. Proteomics 2(5):513–523

    CAS  PubMed  Google Scholar 

  207. Link AJ et al (1999) Direct analysis of protein complexes using mass spectrometry. Nat Biotechnol 17(7):676–682

    CAS  PubMed  Google Scholar 

  208. Baud F, Karlin S (1999) Measures of residue density in protein structures. Proc Natl Acad Sci USA 96(22):12494–12499

    CAS  PubMed  Google Scholar 

  209. Thelen JJ, Miernyk JA (2012) The proteomic future: where mass spectrometry should be taking us. Biochem J 444(2):169–181

    CAS  PubMed  Google Scholar 

  210. Fischer F, Poetsch A (2006) Protein cleavage strategies for an improved analysis of the membrane proteome. Proteome Sci 4:2

    PubMed Central  PubMed  Google Scholar 

  211. Swaney DL, Wenger CD, Coon JJ (2010) Value of using multiple proteases for large-scale mass spectrometry-based proteomics. J Proteome Res 9(3):1323–1329

    CAS  PubMed Central  PubMed  Google Scholar 

  212. Henzel WJ, Watanabe C, Stults JT (2003) Protein identification: the origins of peptide mass fingerprinting. J Am Soc Mass Spectrom 14(9):931–942

    CAS  PubMed  Google Scholar 

  213. Ganem J, Li YT, Henion J (1991) Detection of noncovalent receptor-ligand complexes by mass spectrometry. J Am Chem Soc 113:6294–6296

    CAS  Google Scholar 

  214. Sakata E et al (2011) The catalytic activity of Ubp6 enhances maturation of the proteasomal regulatory particle. Mol Cell 42(5):637–649

    CAS  PubMed  Google Scholar 

  215. Lorenzen K et al (2007) Structural biology of RNA polymerase III: mass spectrometry elucidates subcomplex architecture. Structure 15(10):1237–1245

    CAS  PubMed  Google Scholar 

  216. Uetrecht C et al (2008) High-resolution mass spectrometry of viral assemblies: molecular composition and stability of dimorphic hepatitis B virus capsids. Proc Natl Acad Sci USA 105(27):9216–9220

    CAS  PubMed  Google Scholar 

  217. Barrera NP et al (2008) Micelles protect membrane complexes from solution to vacuum. Science 321(5886):243–246

    CAS  PubMed  Google Scholar 

  218. Barrera NP et al (2009) Mass spectrometry of membrane transporters reveals subunit stoichiometry and interactions. Nat Methods 6(8):585–587

    CAS  PubMed  Google Scholar 

  219. Uetrecht C et al (2010) Ion mobility mass spectrometry of proteins and protein assemblies. Chem Soc Rev 39(5):1633–1655

    CAS  PubMed  Google Scholar 

  220. Park AY, Robinson CV (2011) Protein-nucleic acid complexes and the role of mass spectrometry in their structure determination. Crit Rev Biochem Mol Biol 46(2):152–164

    CAS  PubMed  Google Scholar 

  221. Kaddis CS et al (2007) Sizing large proteins and protein complexes by electrospray ionization mass spectrometry and ion mobility. J Am Soc Mass Spectrom 18(7):1206–1216

    CAS  PubMed Central  PubMed  Google Scholar 

  222. Foster LJ et al (2006) Insulin-dependent interactions of proteins with GLUT4 revealed through stable isotope labeling by amino acids in cell culture (SILAC). J Proteome Res 5(1):64–75

    CAS  PubMed  Google Scholar 

  223. Dobreva I et al (2008) Mapping the integrin-linked kinase interactome using SILAC. J Proteome Res 7(4):1740–1749

    CAS  PubMed  Google Scholar 

  224. Trinkle-Mulcahy L et al (2006) Repo-Man recruits PP1 gamma to chromatin and is essential for cell viability. J Cell Biol 172(5):679–692

    CAS  PubMed  Google Scholar 

  225. Blagoev B et al (2003) A proteomics strategy to elucidate functional protein–protein interactions applied to EGF signaling. Nat Biotechnol 21(3):315–318

    CAS  PubMed  Google Scholar 

  226. Selbach M, Mann M (2006) Protein interaction screening by quantitative immunoprecipitation combined with knockdown (QUICK). Nat Methods 3(12):981–983

    CAS  PubMed  Google Scholar 

  227. Pflieger D et al (2008) Quantitative proteomic analysis of protein complexes: concurrent identification of interactors and their state of phosphorylation. Mol Cell Proteomics 7(2):326–346

    CAS  PubMed  Google Scholar 

  228. Brand M et al (2004) Dynamic changes in transcription factor complexes during erythroid differentiation revealed by quantitative proteomics. Nat Struct Mol Biol 11(1):73–80

    CAS  PubMed  Google Scholar 

  229. Filiou MD et al (2012) To label or not to label: applications of quantitative proteomics in neuroscience research. Proteomics 12(4–5):736–747

    CAS  PubMed  Google Scholar 

  230. Mann M (2006) Functional and quantitative proteomics using SILAC. Nat Rev Mol Cell Biol 7(12):952–958

    CAS  PubMed  Google Scholar 

  231. Gygi SP et al (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17(10):994–999

    CAS  PubMed  Google Scholar 

  232. Ross PL et al (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3(12):1154–1169

    CAS  PubMed  Google Scholar 

  233. Ong SE et al (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1(5):376–386

    CAS  PubMed  Google Scholar 

  234. Oeljeklaus S, Meyer HE, Warscheid B (2009) New dimensions in the study of protein complexes using quantitative mass spectrometry. FEBS Lett 583(11):1674–1683

    CAS  PubMed  Google Scholar 

  235. Ranish JA et al (2003) The study of macromolecular complexes by quantitative proteomics. Nat Genet 33(3):349–355

    CAS  PubMed  Google Scholar 

  236. Rinner O et al (2007) An integrated mass spectrometric and computational framework for the analysis of protein interaction networks. Nat Biotechnol 25(3):345–352

    CAS  PubMed  Google Scholar 

  237. Smith VF et al (1996) Electrospray mass spectrometric investigation of the chaperone SecB. Protein Sci 5(3):488–494

    CAS  PubMed  Google Scholar 

  238. Gotze M et al (2012) StavroX–a software for analyzing crosslinked products in protein interaction studies. J Am Soc Mass Spectrom 23(1):76–87

    PubMed  Google Scholar 

  239. Vidova V et al (2010) Laser desorption-ionization of lipid transfers: tissue mass spectrometry imaging without MALDI matrix. Anal Chem 82(12):4994–4997

    CAS  PubMed  Google Scholar 

  240. Kool J et al (2011) Studying protein–protein affinity and immobilized ligand-protein affinity interactions using MS-based methods. Anal Bioanal Chem 401(4):1109–1125

    CAS  PubMed Central  PubMed  Google Scholar 

  241. Bunt J et al (2012) OTX2 directly activates cell cycle genes and inhibits differentiation in medulloblastoma cells. Int J Cancer 131(2):E21–E32

    CAS  PubMed  Google Scholar 

  242. Giles K et al (2004) Applications of a travelling wave-based radio-frequency-only stacked ring ion guide. Rapid Commun Mass Spectrom 18(20):2401–2414

    CAS  PubMed  Google Scholar 

  243. van den Heuvel RH et al (2006) Improving the performance of a quadrupole time-of-flight instrument for macromolecular mass spectrometry. Anal Chem 78(21):7473–7483

    PubMed  Google Scholar 

  244. Bothner B, Siuzdak G (2004) Electrospray ionization of a whole virus: analyzing mass, structure, and viability. ChemBioChem 5(3):258–260

    CAS  PubMed  Google Scholar 

  245. Uetrecht C et al (2011) Interrogating viral capsid assembly with ion mobility-mass spectrometry. Nat Chem 3(2):126–132

    CAS  PubMed  Google Scholar 

  246. Knapman TW et al (2010) Determining the topology of virus assembly intermediates using ion mobility spectrometry-mass spectrometry. Rapid Commun Mass Spectrom 24(20):3033–3042

    CAS  PubMed  Google Scholar 

  247. Brewis IA, Brennan P (2010) Proteomics technologies for the global identification and quantification of proteins. Adv Protein Chem Struct Biol 80:1–44

    CAS  PubMed  Google Scholar 

  248. Wang F, Pan YC (1991) Structural analyses of proteins electroblotted from native polyacrylamide gels onto polyvinyldiene difluoride membranes. A method for determining the stoichiometry of protein–protein interaction in solution. Anal Biochem 198(2):285–291

    CAS  PubMed  Google Scholar 

  249. Wang F et al (1993) Electroblotting proteolytic products from native gel for direct N-terminal sequence analysis: an approach for studying protein–protein interaction. Electrophoresis 14(9):847–851

    CAS  PubMed  Google Scholar 

  250. Karger BL, Chu YH, Foret F (1995) Capillary electrophoresis of proteins and nucleic acids. Annu Rev Biophys Biomol Struct 24:579–610

    CAS  PubMed  Google Scholar 

  251. Vergnon AL, Chu YH (1999) Electrophoretic methods for studying protein–protein interactions. Methods 19(2):270–277

    CAS  PubMed  Google Scholar 

  252. Hernandez-Borges J et al (2007) Recent applications in nanoliquid chromatography. J Sep Sci 30(11):1589–1610

    CAS  PubMed  Google Scholar 

  253. Pieters S, Dejaegher B, Vander Heyden Y (2010) Emerging analytical separation techniques with high throughput potential for pharmaceutical analysis, part I: Stationary phase and instrumental developments in LC. Comb Chem High Throughput Screen 13(6):510–529

    CAS  PubMed  Google Scholar 

  254. Vestal ML (2011) The future of biological mass spectrometry. J Am Soc Mass Spectrom 22(6):953–959

    CAS  PubMed  Google Scholar 

  255. Craig R, Cortens JP, Beavis RC (2004) Open source system for analyzing, validating, and storing protein identification data. J Proteome Res 3(6):1234–1242

    CAS  PubMed  Google Scholar 

  256. Deutsch EW, Lam H, Aebersold R (2008) PeptideAtlas: a resource for target selection for emerging targeted proteomics workflows. EMBO Rep 9(5):429–434

    CAS  PubMed Central  PubMed  Google Scholar 

  257. Martens L et al (2005) PRIDE: the proteomics identifications database. Proteomics 5(13):3537–3545

    CAS  PubMed  Google Scholar 

  258. Caspi R et al (2010) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 38:D473–D479 Database issue

    CAS  PubMed Central  PubMed  Google Scholar 

  259. Raja K, Subramani S, Natarajan J (2013) PPInterFinder–a mining tool for extracting causal relations on human proteins from literature. Database (Oxford) 2013:bas052

    Google Scholar 

  260. Kesika P, Balamurugan K (2012) Studies on Shigella boydii infection in Caenorhabditis elegans and bioinformatics analysis of immune regulatory protein interactions. Biochim Biophys Acta 1824(12):1449–1456

    CAS  PubMed  Google Scholar 

  261. Li ZG et al (2012) Prediction of protein–protein interactions between Ralstonia solanacearum and Arabidopsis thaliana. Amino Acids 42(6):2363–2371

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Ms. Laura Mulderig, Scott Nichols, and their colleagues (Waters Corporation) for their generous support in setting up the Proteomics Center at Clarkson University. CCD thanks Drs. Thomas A. Neubert (New York University) and Belinda Willard (Cleveland Clinic), and Drs. Gregory Wolber and David Mclaughin and Ms. Cathy Leyer (Eastman Kodak Company) for donation of a TofSpec2E MALDI-MS (each). This work was supported in part by Clarkson University (start-up grant to CCD), private donations (Ms. Mary Stewart Joyce and Mr. Kenneth Sandler), the Redcay Foundation (SUNY Plattsburgh), SciFund Challenge donors and by the U.S. Army research office through the Defense University Research Instrumentation Program (DURIP grant #W911NF-11-1-0304). The authors declare that they have no competing and/or financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costel C. Darie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ngounou Wetie, A.G., Sokolowska, I., Woods, A.G. et al. Protein–protein interactions: switch from classical methods to proteomics and bioinformatics-based approaches. Cell. Mol. Life Sci. 71, 205–228 (2014). https://doi.org/10.1007/s00018-013-1333-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1333-1

Keywords

Navigation