Skip to main content

Advertisement

Log in

Mechanisms of heat shock response in mammals

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Heat shock (HS) is one of the best-studied exogenous cellular stresses. The cellular response to HS utilizes ancient molecular networks that are based primarily on the action of stress-induced heat shock proteins and HS factors. However, in one way or another, all cellular compartments and metabolic processes are involved in such a response. In this review, we aimed to summarize the experimental data concerning all aspects of the HS response in mammalian cells, such as HS-induced structural and functional alterations of cell membranes, the cytoskeleton and cellular organelles; the associated pathways that result in different modes of cell death and cell cycle arrest; and the effects of HS on transcription, splicing, translation, DNA repair, and replication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Plough HH (1917) The effect of temperature on linkage in the second chromosome of Drosophila. Proc Natl Acad Sci USA 3:553–555

    CAS  PubMed  Google Scholar 

  2. Roberts E (1918) Fluctuations in a recessive Mendelian character and selection. J Exp Zool 27:157–192

    Google Scholar 

  3. Muller HJ (1922) Variation due to change in the individual gene. Am Nat 56:32–50

    Google Scholar 

  4. Plough HH, Ives PT (1934) Heat induced mutations in Drosophila. Proc Natl Acad Sci USA 20:268–273

    CAS  PubMed  Google Scholar 

  5. Plough HH, Ives PT (1935) Induction of mutations by high temperature in Drosophila. Genetics 20:42–69

    CAS  PubMed  Google Scholar 

  6. Ritossa FM (1962) A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia 18:571–573

    CAS  Google Scholar 

  7. Ashburner M, Bonner JJ (1979) The induction of gene activity in Drosophila by heat shock. Cell 17:241–254

    CAS  PubMed  Google Scholar 

  8. Peterson NS, Moller G, Mitchell HK (1979) Genetic mapping of the coding regions for three heat-shock proteins in Drosophila melanogaster. Genetics 92:891–902

    CAS  PubMed  Google Scholar 

  9. Gething MJ, Sambrook J (1992) Protein folding in the cell. Nature 355:33–45

    CAS  PubMed  Google Scholar 

  10. Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381:571–579

    CAS  PubMed  Google Scholar 

  11. Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241–4257

    CAS  PubMed  Google Scholar 

  12. Tabuchi Y, Takasaki I, Wada S, Zhao QL, Hori T, Nomura T, Ohtsuka K, Kondo T (2008) Genes and genetic networks responsive to mild hyperthermia in human lymphoma U937 cells. Int J Hyperth 24:613–622

    CAS  Google Scholar 

  13. Richter K, Haslbeck M, Buchner J (2010) The heat shock response: life on the verge of death. Mol Cell 40:253–266

    CAS  PubMed  Google Scholar 

  14. Fulda S, Gorman AM, Hori O, Samali A (2010) Cellular stress responses: cell survival and cell death. Int J Cell Biol 2010:214074

    PubMed  Google Scholar 

  15. Kultz D (2005) Molecular and evolutionary basis of the cellular stress response. Annu Rev Physiol 67:225–257

    PubMed  Google Scholar 

  16. Morimoto RI (2011) The heat shock response: systems biology of proteotoxic stress in aging and disease. Cold Spring Harb Symp Quant Biol 76:91–99

    CAS  PubMed  Google Scholar 

  17. Shamovsky I, Nudler E (2008) New insights into the mechanism of heat shock response activation. Cell Mol Life Sci 65:855–861

    CAS  PubMed  Google Scholar 

  18. Vigh L, Horvath I, Maresca B, Harwood JL (2007) Can the stress protein response be controlled by ‘membrane-lipid therapy’? Trends Biochem Sci 32:357–363

    CAS  PubMed  Google Scholar 

  19. Vigh L, Nakamoto H, Landry J, Gomez-Munoz A, Harwood JL, Horvath I (2007) Membrane regulation of the stress response from prokaryotic models to mammalian cells. Ann N Y Acad Sci 1113:40–51

    CAS  PubMed  Google Scholar 

  20. Balogh G, Horvath I, Nagy E, Hoyk Z, Benko S, Bensaude O, Vigh L (2005) The hyperfluidization of mammalian cell membranes acts as a signal to initiate the heat shock protein response. FEBS J 272:6077–6086

    CAS  PubMed  Google Scholar 

  21. Vigh L, Maresca B, Harwood JL (1998) Does the membrane’s physical state control the expression of heat shock and other genes? Trends Biochem Sci 23:369–374

    CAS  PubMed  Google Scholar 

  22. Carratu L, Franceschelli S, Pardini CL, Kobayashi GS, Horvath I, Vigh L, Maresca B (1996) Membrane lipid perturbation modifies the set point of the temperature of heat shock response in yeast. Proc Natl Acad Sci USA 93:3870–3875

    CAS  PubMed  Google Scholar 

  23. Torok Z, Horvath I, Goloubinoff P, Kovacs E, Glatz A, Balogh G, Vigh L (1997) Evidence for a lipochaperonin: association of active protein-folding GroESL oligomers with lipids can stabilize membranes under heat shock conditions. Proc Natl Acad Sci USA 94:2192–2197

    CAS  PubMed  Google Scholar 

  24. Lin PS, Lui PS, Tsai S (1978) Heat induced ultrastructural injuries in lymphoid cells. Exp Mol Pathol 29:281–290

    CAS  PubMed  Google Scholar 

  25. Hamada N, Kodama S, Suzuki K, Watanabe M (2003) Gap junctional intercellular communication and cellular response to heat stress. Carcinogenesis 24:1723–1728

    CAS  PubMed  Google Scholar 

  26. Sato C, Nakayama T, Kojima K, Nishimoto Y, Nakamura W (1981) Effects of hyperthermia on cell surface charge and cell survival in mastocytoma cells. Cancer Res 41:4107–4110

    CAS  PubMed  Google Scholar 

  27. Mikkelsen RB, Koch B (1981) Thermosensitivity of the membrane potential of normal and simian virus 40-transformed hamster lymphocytes. Cancer Res 41:209–215

    CAS  PubMed  Google Scholar 

  28. Nishida T, Akagi K, Tanaka Y (1997) Correlation between cell killing effect and cell membrane potential after heat treatment: analysis using fluorescent dye and flow cytometry. Int J Hyperth 13:227–234

    CAS  Google Scholar 

  29. Park HG, Han SI, Oh SY, Kang HS (2005) Cellular responses to mild heat stress. Cell Mol Life Sci 62:10–23

    CAS  PubMed  Google Scholar 

  30. Stevenson MA, Calderwood SK, Hahn GM (1987) Effect of hyperthermia (45 degrees C) on calcium flux in Chinese hamster ovary HA-1 fibroblasts and its potential role in cytotoxicity and heat resistance. Cancer Res 47:3712–3717

    CAS  PubMed  Google Scholar 

  31. Kiang JG, Gist ID, Tsokos GC (2000) Regulation of heat shock protein 72 kDa and 90 kDa in human breast cancer MDA-MB-231 cells. Mol Cell Biochem 204:169–178

    CAS  PubMed  Google Scholar 

  32. Moulin M, Arrigo AP (2006) Long lasting heat shock stimulation of TRAIL-induced apoptosis in transformed T lymphocytes. Exp Cell Res 312:1765–1784

    CAS  PubMed  Google Scholar 

  33. Moulin M, Carpentier S, Levade T, Arrigo AP (2007) Potential roles of membrane fluidity and ceramide in hyperthermia and alcohol stimulation of TRAIL apoptosis. Apoptosis 12:1703–1720

    CAS  PubMed  Google Scholar 

  34. Huang J, Zhang X, McNaughton PA (2006) Modulation of temperature-sensitive TRP channels. Semin Cell Dev Biol 17:638–645

    CAS  PubMed  Google Scholar 

  35. Patapoutian A, Peier AM, Story GM, Viswanath V (2003) ThermoTRP channels and beyond: mechanisms of temperature sensation. Nat Rev Neurosci 4:529–539

    CAS  PubMed  Google Scholar 

  36. Pollard TD (2003) The cytoskeleton, cellular motility and the reductionist agenda. Nature 422:741–745

    CAS  PubMed  Google Scholar 

  37. Armour EP, McEachern D, Wang Z, Corry PM, Martinez A (1993) Sensitivity of human cells to mild hyperthermia. Cancer Res 53:2740–2744

    CAS  PubMed  Google Scholar 

  38. Luchetti F, Mannello F, Canonico B, Battistelli M, Burattini S, Falcieri E, Papa S (2004) Integrin and cytoskeleton behaviour in human neuroblastoma cells during hyperthermia-related apoptosis. Apoptosis 9:635–648

    CAS  PubMed  Google Scholar 

  39. Pawlik A, Nowak JM, Grzanka D, Gackowska L, Michalkiewicz J, Grzanka A (2012) Hyperthermia induces cytoskeletal alterations and mitotic catastrophe in p53-deficient H1299 lung cancer cells. Acta Histochem 115(1):8–15

    PubMed  Google Scholar 

  40. Vidair CA, Doxsey SJ, Dewey WC (1993) Heat shock alters centrosome organization leading to mitotic dysfunction and cell death. J Cell Physiol 154:443–455

    CAS  PubMed  Google Scholar 

  41. Nakahata K, Miyakoda M, Suzuki K, Kodama S, Watanabe M (2002) Heat shock induces centrosomal dysfunction, and causes non-apoptotic mitotic catastrophe in human tumour cells. Int J Hyperth 18:332–343

    CAS  Google Scholar 

  42. Gupta RK, Srinivas UK (2008) Heat shock induces chromosomal instability in near-tetraploid embryonal carcinoma cells. Cancer Biol Ther 7:1471–1480

    CAS  PubMed  Google Scholar 

  43. Wang TT, Chiang AS, Chu JJ, Cheng TJ, Chen TM, Lai YK (1998) Concomitant alterations in distribution of 70 kDa heat shock proteins, cytoskeleton and organelles in heat shocked 9L cells. Int J Biochem Cell Biol 30:745–759

    CAS  PubMed  Google Scholar 

  44. Coss RA, Alden ME, Wachsberger PR, Smith NN (1996) Response of the microtubular cytoskeleton following hyperthermia as a prognostic indicator of survival of Chinese hamster ovary cells. Int J Radiat Oncol Biol Phys 34:403–410

    CAS  PubMed  Google Scholar 

  45. Welch WJ, Suhan JP (1985) Morphological study of the mammalian stress response: characterization of changes in cytoplasmic organelles, cytoskeleton, and nucleoli, and appearance of intranuclear actin filaments in rat fibroblasts after heat-shock treatment. J Cell Biol 101:1198–1211

    CAS  PubMed  Google Scholar 

  46. Cole A, Armour EP (1988) Ultrastructural study of mitochondrial damage in CHO cells exposed to hyperthermia. Radiat Res 115:421–435

    CAS  PubMed  Google Scholar 

  47. Rivera RM, Kelley KL, Erdos GW, Hansen PJ (2003) Alterations in ultrastructural morphology of two-cell bovine embryos produced in vitro and in vivo following a physiologically relevant heat shock. Biol Reprod 69:2068–2077

    CAS  PubMed  Google Scholar 

  48. Iliakis GE, Pantelias GE (1989) Effects of hyperthermia on chromatin condensation and nucleoli disintegration as visualized by induction of premature chromosome condensation in interphase mammalian cells. Cancer Res 49:1254–1260

    CAS  PubMed  Google Scholar 

  49. Wang Y, Guan J, Wang H, Leeper D, Iliakis G (2001) Regulation of DNA replication after heat shock by replication protein a-nucleolin interactions. J Biol Chem 276:20579–20588

    CAS  PubMed  Google Scholar 

  50. Vanderwaal RP, Maggi LB Jr, Weber JD, Hunt CR, Roti Roti JL (2009) Nucleophosmin redistribution following heat shock: a role in heat-induced radiosensitization. Cancer Res 69:6454–6462

    CAS  PubMed  Google Scholar 

  51. Boulon S, Westman BJ, Hutten S, Boisvert FM, Lamond AI (2010) The nucleolus under stress. Mol Cell 40:216–227

    CAS  PubMed  Google Scholar 

  52. Jolly C, Konecny L, Grady DL, Kutskova YA, Cotto JJ, Morimoto RI, Vourc’h C (2002) In vivo binding of active heat shock transcription factor 1 to human chromosome 9 heterochromatin during stress. J Cell Biol 156:775–781

    CAS  PubMed  Google Scholar 

  53. Denegri M, Moralli D, Rocchi M, Biggiogera M, Raimondi E, Cobianchi F, De Carli L, Riva S, Biamonti G (2002) Human chromosomes 9, 12, and 15 contain the nucleation sites of stress-induced nuclear bodies. Mol Biol Cell 13:2069–2079

    CAS  PubMed  Google Scholar 

  54. Biamonti G (2004) Nuclear stress bodies: a heterochromatin affair? Nat Rev Mol Cell Biol 5:493–498

    CAS  PubMed  Google Scholar 

  55. Rizzi N, Denegri M, Chiodi I, Corioni M, Valgardsdottir R, Cobianchi F, Riva S, Biamonti G (2004) Transcriptional activation of a constitutive heterochromatic domain of the human genome in response to heat shock. Mol Biol Cell 15:543–551

    CAS  PubMed  Google Scholar 

  56. Valgardsdottir R, Chiodi I, Giordano M, Rossi A, Bazzini S, Ghigna C, Riva S, Biamonti G (2008) Transcription of satellite III non-coding RNAs is a general stress response in human cells. Nucleic Acids Res 36:423–434

    CAS  PubMed  Google Scholar 

  57. Anderson P, Kedersha N (2002) Stressful initiations. J Cell Sci 115:3227–3234

    CAS  PubMed  Google Scholar 

  58. Anderson P, Kedersha N (2008) Stress granules: the Tao of RNA triage. Trends Biochem Sci 33:141–150

    CAS  PubMed  Google Scholar 

  59. Kedersha N, Stoecklin G, Ayodele M, Yacono P, Lykke-Andersen J, Fritzler MJ, Scheuner D, Kaufman RJ, Golan DE, Anderson P (2005) Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J Cell Biol 169:871–884

    CAS  PubMed  Google Scholar 

  60. Takahashi A, Matsumoto H, Nagayama K, Kitano M, Hirose S, Tanaka H, Mori E, Yamakawa N, Yasumoto J, Yuki K, Ohnishi K, Ohnishi T (2004) Evidence for the involvement of double-strand breaks in heat-induced cell killing. Cancer Res 64:8839–8845

    CAS  PubMed  Google Scholar 

  61. Harmon BV, Corder AM, Collins RJ, Gobe GC, Allen J, Allan DJ, Kerr JF (1990) Cell death induced in a murine mastocytoma by 42–47 degrees C heating in vitro: evidence that the form of death changes from apoptosis to necrosis above a critical heat load. Int J Radiat Biol 58:845–858

    CAS  PubMed  Google Scholar 

  62. VanderWaal R, Malyapa RS, Higashikubo R, Roti Roti JL (1997) A comparison of the modes and kinetics of heat-induced cell killing in HeLa and L5178Y cells. Radiat Res 148:455–462

    CAS  PubMed  Google Scholar 

  63. Vidair CA, Dewey WC (1988) Two distinct modes of hyperthermic cell death. Radiat Res 116:157–171

    CAS  PubMed  Google Scholar 

  64. Hildebrandt B, Wust P, Ahlers O, Dieing A, Sreenivasa G, Kerner T, Felix R, Riess H (2002) The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hematol 43:33–56

    PubMed  Google Scholar 

  65. O’Neill KL, Fairbairn DW, Smith MJ, Poe BS (1998) Critical parameters influencing hyperthermia-induced apoptosis in human lymphoid cell lines. Apoptosis 3:369–375

    PubMed  Google Scholar 

  66. Falcieri E, Luchetti F, Burattini S, Canonico B, Santi S, Papa S (2000) Lineage-related sensitivity to apoptosis in human tumor cells undergoing hyperthermia. Histochem Cell Biol 113:135–144

    CAS  PubMed  Google Scholar 

  67. Amarante-Mendes GP, McGahon AJ, Nishioka WK, Afar DE, Witte ON, Green DR (1998) Bcl-2-independent Bcr-Abl-mediated resistance to apoptosis: protection is correlated with up regulation of Bcl-xL. Oncogene 16:1383–1390

    CAS  PubMed  Google Scholar 

  68. Milleron RS, Bratton SB (2006) Heat shock induces apoptosis independently of any known initiator caspase-activating complex. J Biol Chem 281:16991–17000

    CAS  PubMed  Google Scholar 

  69. Milleron RS, Bratton SB (2007) ‘Heated’ debates in apoptosis. Cell Mol Life Sci 64:2329–2333

    CAS  PubMed  Google Scholar 

  70. Palzer RJ, Heidelberger C (1973) Studies on the quantitative biology of hyperthermic killing of HeLa cells. Cancer Res 33:415–421

    CAS  PubMed  Google Scholar 

  71. Westra A, Dewey WC (1971) Variation in sensitivity to heat shock during the cell-cycle of Chinese hamster cells in vitro. Int J Radiat Biol Relat Stud Phys Chem Med 19:467–477

    CAS  PubMed  Google Scholar 

  72. Bhuyan BK, Day KJ, Edgerton CE, Ogunbase O (1977) Sensitivity of different cell lines and of different phases in the cell cycle to hyperthermia. Cancer Res 37:3780–3784

    CAS  PubMed  Google Scholar 

  73. Valenzuela MT, Nunez MI, Villalobos M, Siles E, McMillan TJ, Pedraza V, Ruiz de Almodovar JM (1997) A comparison of p53 and p16 expression in human tumor cells treated with hyperthermia or ionizing radiation. Int J Cancer 72:307–312

    CAS  PubMed  Google Scholar 

  74. Furusawa Y, Iizumi T, Fujiwara Y, Zhao QL, Tabuchi Y, Nomura T, Kondo T (2012) Inhibition of checkpoint kinase 1 abrogates G2/M checkpoint activation and promotes apoptosis under heat stress. Apoptosis 17:102–112

    CAS  PubMed  Google Scholar 

  75. Madlener S, Rosner M, Krieger S, Giessrigl B, Gridling M, Vo TP, Leisser C, Lackner A, Raab I, Grusch M, Hengstschlager M, Dolznig H, Krupitza G (2009) Short 42 degrees C heat shock induces phosphorylation and degradation of Cdc25A which depends on p38MAPK, Chk2 and 14.3.3. Hum Mol Genet 18:1990–2000

    CAS  PubMed  Google Scholar 

  76. Nitta M, Okamura H, Aizawa S, Yamaizumi M (1997) Heat shock induces transient p53-dependent cell cycle arrest at G1/S. Oncogene 15:561–568

    CAS  PubMed  Google Scholar 

  77. Fuse T, Yamada K, Asai K, Kato T, Nakanishi M (1996) Heat shock-mediated cell cycle arrest is accompanied by induction of p21 CKI. Biochem Biophys Res Commun 225:759–763

    CAS  PubMed  Google Scholar 

  78. Nunes E, Siede W (1996) Hyperthermia and paraquat-induced G1 arrest in the yeast Saccharomyces cerevisiae is independent of the RAD9 gene. Radiat Environ Biophys 35:55–57

    CAS  PubMed  Google Scholar 

  79. Rowley A, Johnston GC, Butler B, Werner-Washburne M, Singer RA (1993) Heat shock-mediated cell cycle blockage and G1 cyclin expression in the yeast Saccharomyces cerevisiae. Mol Cell Biol 13:1034–1041

    CAS  PubMed  Google Scholar 

  80. De Maio A, Santoro MG, Tanguay RM, Hightower LE (2012) Ferruccio Ritossa’s scientific legacy 50 years after his discovery of the heat shock response: a new view of biology, a new society, and a new journal. Cell Stress Chaperones 17:139–143

    CAS  PubMed  Google Scholar 

  81. Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22:631–677

    CAS  PubMed  Google Scholar 

  82. Kampinga HH, Hageman J, Vos MJ, Kubota H, Tanguay RM, Bruford EA, Cheetham ME, Chen B, Hightower LE (2009) Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14:105–111

    CAS  PubMed  Google Scholar 

  83. Kregel KC (2002) Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J Appl Physiol 92:2177–2186

    CAS  PubMed  Google Scholar 

  84. Calderwood SK, Murshid A, Prince T (2009) The shock of aging: molecular chaperones and the heat shock response in longevity and aging—a mini-review. Gerontology 55:550–558

    CAS  PubMed  Google Scholar 

  85. Patel B, Khaliq A, Jarvis-Evans J, Boulton M, Arrol S, Mackness M, McLeod D (1995) Hypoxia induces HSP 70 gene expression in human hepatoma (HEP G2) cells. Biochem Mol Biol Int 36:907–912

    CAS  PubMed  Google Scholar 

  86. Richard V, Kaeffer N, Thuillez C (1996) Delayed protection of the ischemic heart—from pathophysiology to therapeutic applications. Fundam Clin Pharmacol 10:409–415

    CAS  PubMed  Google Scholar 

  87. Yang XM, Baxter GF, Heads RJ, Yellon DM, Downey JM, Cohen MV (1996) Infarct limitation of the second window of protection in a conscious rabbit model. Cardiovasc Res 31:777–783

    CAS  PubMed  Google Scholar 

  88. Collins PL, Hightower LE (1982) Newcastle disease virus stimulates the cellular accumulation of stress (heat shock) mRNAs and proteins. J Virol 44:703–707

    CAS  PubMed  Google Scholar 

  89. Plesset J, Palm C, McLaughlin CS (1982) Induction of heat shock proteins and thermotolerance by ethanol in Saccharomyces cerevisiae. Biochem Biophys Res Commun 108:1340–1345

    CAS  PubMed  Google Scholar 

  90. Freeman BC, Michels A, Song J, Kampinga HH, Morimoto RI (2000) Analysis of molecular chaperone activities using in vitro and in vivo approaches. Methods Mol Biol 99:393–419

    CAS  PubMed  Google Scholar 

  91. Diller KR (2006) Stress protein expression kinetics. Annu Rev Biomed Eng 8:403–424

    CAS  PubMed  Google Scholar 

  92. Schroder M, Kaufman RJ (2005) The mammalian unfolded protein response. Annu Rev Biochem 74:739–789

    PubMed  Google Scholar 

  93. Mayer MP, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62:670–684

    CAS  PubMed  Google Scholar 

  94. Evdonin AL, Guzhova IV, Margulis BA, Medvedeva ND (2006) Extracellular heat shock protein 70 mediates heat stress-induced epidermal growth factor receptor transactivation in A431 carcinoma cells. FEBS Lett 580:6674–6678

    CAS  PubMed  Google Scholar 

  95. Evdonin AL, Martynova MG, Bystrova OA, Guzhova IV, Margulis BA, Medvedeva ND (2006) The release of Hsp70 from A431 carcinoma cells is mediated by secretory-like granules. Eur J Cell Biol 85:443–455

    CAS  PubMed  Google Scholar 

  96. Mambula SS, Stevenson MA, Ogawa K, Calderwood SK (2007) Mechanisms for Hsp70 secretion: crossing membranes without a leader. Methods 43:168–175

    CAS  PubMed  Google Scholar 

  97. Li W, Sahu D, Tsen F (2012) Secreted heat shock protein-90 (Hsp90) in wound healing and cancer. Biochim Biophys Acta 1823:730–741

    CAS  PubMed  Google Scholar 

  98. Oda T, Hayano T, Miyaso H, Takahashi N, Yamashita T (2007) Hsp90 regulates the Fanconi anemia DNA damage response pathway. Blood 109:5016–5026

    CAS  PubMed  Google Scholar 

  99. Stecklein SR, Kumaraswamy E, Behbod F, Wang W, Chaguturu V, Harlan-Williams LM, Jensen RA (2012) BRCA1 and HSP90 cooperate in homologous and non-homologous DNA double-strand-break repair and G2/M checkpoint activation. Proc Natl Acad Sci USA 109:13650–13655

    CAS  PubMed  Google Scholar 

  100. Mehlen P, Arrigo AP (1994) The serum-induced phosphorylation of mammalian hsp27 correlates with changes in its intracellular localization and levels of oligomerization. Eur J Biochem 221:327–334

    CAS  PubMed  Google Scholar 

  101. Welch WJ, Feramisco JR (1984) Nuclear and nucleolar localization of the 72,000-dalton heat shock protein in heat-shocked mammalian cells. J Biol Chem 259:4501–4513

    CAS  PubMed  Google Scholar 

  102. Kampinga HH (1993) Thermotolerance in mammalian cells. Protein denaturation and aggregation, and stress proteins. J Cell Sci 104 (Pt 1):11–17

    Google Scholar 

  103. Garrido C, Solary E (2003) A role of HSPs in apoptosis through “protein triage”? Cell Death Differ 10:619–620

    CAS  PubMed  Google Scholar 

  104. Garrido C, Gurbuxani S, Ravagnan L, Kroemer G (2001) Heat shock proteins: endogenous modulators of apoptotic cell death. Biochem Biophys Res Commun 286:433–442

    CAS  PubMed  Google Scholar 

  105. Wu C (1995) Heat shock transcription factors: structure and regulation. Annu Rev Cell Dev Biol 11:441–469

    CAS  PubMed  Google Scholar 

  106. Marchler G, Schuller C, Adam G, Ruis H (1993) A Saccharomyces cerevisiae UAS element controlled by protein kinase A activates transcription in response to a variety of stress conditions. EMBO J 12:1997–2003

    CAS  PubMed  Google Scholar 

  107. Akerfelt M, Morimoto RI, Sistonen L (2010) Heat shock factors: integrators of cell stress, development and lifespan. Nat Rev Mol Cell Biol 11:545–555

    CAS  PubMed  Google Scholar 

  108. Harrison CJ, Bohm AA, Nelson HC (1994) Crystal structure of the DNA binding domain of the heat shock transcription factor. Science 263:224–227

    CAS  PubMed  Google Scholar 

  109. Sorger PK (1991) Heat shock factor and the heat shock response. Cell 65:363–366

    CAS  PubMed  Google Scholar 

  110. Giardina C, Lis JT (1995) Dynamic protein-DNA architecture of a yeast heat shock promoter. Mol Cell Biol 15:2737–2744

    CAS  PubMed  Google Scholar 

  111. Voellmy R (2004) On mechanisms that control heat shock transcription factor activity in metazoan cells. Cell Stress Chaperones 9:122–133

    CAS  PubMed  Google Scholar 

  112. Morimoto RI (1998) Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev 12:3788–3796

    CAS  PubMed  Google Scholar 

  113. Westerheide SD, Anckar J, Stevens SM Jr, Sistonen L, Morimoto RI (2009) Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1. Science 323:1063–1066

    CAS  PubMed  Google Scholar 

  114. Murray JI, Whitfield ML, Trinklein ND, Myers RM, Brown PO, Botstein D (2004) Diverse and specific gene expression responses to stresses in cultured human cells. Mol Biol Cell 15:2361–2374

    CAS  PubMed  Google Scholar 

  115. Streffer C (1982) Aspects of biochemical effects by hyperthermia. Natl Cancer Inst Monogr 61:11–17

    CAS  PubMed  Google Scholar 

  116. Allen TA, Von Kaenel S, Goodrich JA, Kugel JF (2004) The SINE-encoded mouse B2 RNA represses mRNA transcription in response to heat shock. Nat Struct Mol Biol 11:816–821

    CAS  PubMed  Google Scholar 

  117. Yakovchuk P, Goodrich JA, Kugel JF (2009) B2 RNA and Alu RNA repress transcription by disrupting contacts between RNA polymerase II and promoter DNA within assembled complexes. Proc Natl Acad Sci USA 106:5569–5574

    CAS  PubMed  Google Scholar 

  118. Mariner PD, Walters RD, Espinoza CA, Drullinger LF, Wagner SD, Kugel JF, Goodrich JA (2008) Human Alu RNA is a modular transacting repressor of mRNA transcription during heat shock. Mol Cell 29:499–509

    CAS  PubMed  Google Scholar 

  119. Espinoza CA, Goodrich JA, Kugel JF (2007) Characterization of the structure, function, and mechanism of B2 RNA, an ncRNA repressor of RNA polymerase II transcription. RNA 13:583–596

    CAS  PubMed  Google Scholar 

  120. Shamovsky I, Ivannikov M, Kandel ES, Gershon D, Nudler E (2006) RNA-mediated response to heat shock in mammalian cells. Nature 440:556–560

    CAS  PubMed  Google Scholar 

  121. Fan J, Yang X, Wang W, Wood WH 3rd, Becker KG, Gorospe M (2002) Global analysis of stress-regulated mRNA turnover by using cDNA arrays. Proc Natl Acad Sci USA 99:10611–10616

    CAS  PubMed  Google Scholar 

  122. Wilmink GJ, Roth CL, Ibey BL, Ketchum N, Bernhard J, Cerna CZ, Roach WP (2010) Identification of microRNAs associated with hyperthermia-induced cellular stress response. Cell Stress Chaperones 15:1027–1038

    CAS  PubMed  Google Scholar 

  123. Vogel JL, Parsell DA, Lindquist S (1995) Heat-shock proteins Hsp104 and Hsp70 reactivate mRNA splicing after heat inactivation. Curr Biol 5:306–317

    CAS  PubMed  Google Scholar 

  124. Bond U (1988) Heat shock but not other stress inducers leads to the disruption of a sub-set of snRNPs and inhibition of in vitro splicing in HeLa cells. EMBO J 7:3509–3518

    CAS  PubMed  Google Scholar 

  125. Yost HJ, Lindquist S (1986) RNA splicing is interrupted by heat shock and is rescued by heat shock protein synthesis. Cell 45:185–193

    CAS  PubMed  Google Scholar 

  126. Shukla RR, Dominski Z, Zwierzynski T, Kole R (1990) Inactivation of splicing factors in HeLa cells subjected to heat shock. J Biol Chem 265:20377–20383

    CAS  PubMed  Google Scholar 

  127. Utans U, Behrens SE, Luhrmann R, Kole R, Kramer A (1992) A splicing factor that is inactivated during in vivo heat shock is functionally equivalent to the [U4/U6.U5] triple snRNP-specific proteins. Genes Dev 6:631–641

    CAS  PubMed  Google Scholar 

  128. Gattoni R, Mahe D, Mahl P, Fischer N, Mattei MG, Stevenin J, Fuchs JP (1996) The human hnRNP-M proteins: structure and relation with early heat shock-induced splicing arrest and chromosome mapping. Nucleic Acids Res 24:2535–2542

    CAS  PubMed  Google Scholar 

  129. Shin C, Feng Y, Manley JL (2004) Dephosphorylated SRp38 acts as a splicing repressor in response to heat shock. Nature 427:553–558

    CAS  PubMed  Google Scholar 

  130. Shin C, Kleiman FE, Manley JL (2005) Multiple properties of the splicing repressor SRp38 distinguish it from typical SR proteins. Mol Cell Biol 25:8334–8343

    CAS  PubMed  Google Scholar 

  131. Metz A, Soret J, Vourc’h C, Tazi J, Jolly C (2004) A key role for stress-induced satellite III transcripts in the relocalization of splicing factors into nuclear stress granules. J Cell Sci 117:4551–4558

    CAS  PubMed  Google Scholar 

  132. Spiro IJ, Denman DL, Dewey WC (1983) Effect of hyperthermia on isolated DNA polymerase-beta. Radiat Res 95:68–77

    CAS  PubMed  Google Scholar 

  133. Dikomey E, Becker W, Wielckens K (1987) Reduction of DNA-polymerase beta activity of CHO cells by single and combined heat treatments. Int J Radiat Biol Relat Stud Phys Chem Med 52:775–785

    CAS  PubMed  Google Scholar 

  134. Mendez F, Sandigursky M, Franklin WA, Kenny MK, Kureekattil R, Bases R (2000) Heat-shock proteins associated with base excision repair enzymes in HeLa cells. Radiat Res 153:186–195

    CAS  PubMed  Google Scholar 

  135. Mendez F, Kozin E, Bases R (2003) Heat shock protein 70 stimulation of the deoxyribonucleic acid base excision repair enzyme polymerase beta. Cell Stress Chaperones 8:153–161

    CAS  PubMed  Google Scholar 

  136. Takahashi A, Yamakawa N, Mori E, Ohnishi K, Yokota S, Sugo N, Aratani Y, Koyama H, Ohnishi T (2008) Development of thermotolerance requires interaction between polymerase-beta and heat shock proteins. Cancer Sci 99:973–978

    CAS  PubMed  Google Scholar 

  137. Drablos F, Feyzi E, Aas PA, Vaagbo CB, Kavli B, Bratlie MS, Pena-Diaz J, Otterlei M, Slupphaug G, Krokan HE (2004) Alkylation damage in DNA and RNA—repair mechanisms and medical significance. DNA Repair (Amst) 3:1389–1407

    CAS  Google Scholar 

  138. Martin LP, Hamilton TC, Schilder RJ (2008) Platinum resistance: the role of DNA repair pathways. Clin Cancer Res 14:1291–1295

    CAS  PubMed  Google Scholar 

  139. Kamileri I, Karakasilioti I, Garinis GA (2012) Nucleotide excision repair: new tricks with old bricks. Trends Genet 28:566–573

    CAS  PubMed  Google Scholar 

  140. Muenyi CS, States VA, Masters JH, Fan TW, Helm CW, States JC (2011) Sodium arsenite and hyperthermia modulate cisplatin-DNA damage responses and enhance platinum accumulation in murine metastatic ovarian cancer xenograft after hyperthermic intraperitoneal chemotherapy (HIPEC). J Ovarian Res 4:9

    CAS  PubMed  Google Scholar 

  141. Schmidt-Rose T, Pollet D, Will K, Bergemann J, Wittern KP (1999) Analysis of UV-B-induced DNA damage and its repair in heat-shocked skin cells. J Photochem Photobiol B 53:144–152

    CAS  PubMed  Google Scholar 

  142. Couedel C, Mills KD, Barchi M, Shen L, Olshen A, Johnson RD, Nussenzweig A, Essers J, Kanaar R, Li GC, Alt FW, Jasin M (2004) Collaboration of homologous recombination and nonhomologous end-joining factors for the survival and integrity of mice and cells. Genes Dev 18:1293–1304

    CAS  PubMed  Google Scholar 

  143. Chapman JR, Taylor MR, Boulton SJ (2012) Playing the end game: DNA double-strand break repair pathway choice. Mol Cell 47:497–510

    CAS  PubMed  Google Scholar 

  144. Dewey WC, Sapareto SA, Betten DA (1978) Hyperthermic radiosensitization of synchronous Chinese hamster cells: relationship between lethality and chromosomal aberrations. Radiat Res 76:48–59

    CAS  PubMed  Google Scholar 

  145. Corry PM, Robinson S, Getz S (1977) Hyperthermic effects on DNA repair mechanisms. Radiology 123:475–482

    CAS  PubMed  Google Scholar 

  146. Wong RS, Dynlacht JR, Cedervall B, Dewey WC (1995) Analysis by pulsed-field gel electrophoresis of DNA double-strand breaks induced by heat and/or X-irradiation in bulk and replicating DNA of CHO cells. Int J Radiat Biol 68:141–152

    CAS  PubMed  Google Scholar 

  147. Burgman P, Ouyang H, Peterson S, Chen DJ, Li GC (1997) Heat inactivation of Ku autoantigen: possible role in hyperthermic radiosensitization. Cancer Res 57:2847–2850

    CAS  PubMed  Google Scholar 

  148. Stucki M, Jackson SP (2006) gammaH2AX and MDC1: anchoring the DNA-damage-response machinery to broken chromosomes. DNA Repair (Amst) 5:534–543

    CAS  Google Scholar 

  149. Laszlo A, Fleischer I (2009) Heat-induced perturbations of DNA damage signaling pathways are modulated by molecular chaperones. Cancer Res 69:2042–2049

    CAS  PubMed  Google Scholar 

  150. Adams MM, Carpenter PB (2006) Tying the loose ends together in DNA double strand break repair with 53BP1. Cell Div 1:19

    PubMed  Google Scholar 

  151. Carney JP, Maser RS, Olivares H, Davis EM, Le Beau M, Yates JR 3rd, Hays L, Morgan WF, Petrini JH (1998) The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell 93:477–486

    CAS  PubMed  Google Scholar 

  152. D’Amours D, Jackson SP (2002) The Mre11 complex: at the crossroads of DNA repair and checkpoint signalling. Nat Rev Mol Cell Biol 3:317–327

    PubMed  Google Scholar 

  153. San Filippo J, Sung P, Klein H (2008) Mechanism of eukaryotic homologous recombination. Annu Rev Biochem 77:229–257

    CAS  PubMed  Google Scholar 

  154. Krawczyk PM, Eppink B, Essers J, Stap J, Rodermond H, Odijk H, Zelensky A, van Bree C, Stalpers LJ, Buist MR, Soullie T, Rens J, Verhagen HJ, O’Connor MJ, Franken NA, Ten Hagen TL, Kanaar R, Aten JA (2011) Mild hyperthermia inhibits homologous recombination, induces BRCA2 degradation, and sensitizes cancer cells to poly (ADP-ribose) polymerase-1 inhibition. Proc Natl Acad Sci USA 108:9851–9856

    CAS  PubMed  Google Scholar 

  155. Seno JD, Dynlacht JR (2004) Intracellular redistribution and modification of proteins of the Mre11/Rad50/Nbs1 DNA repair complex following irradiation and heat-shock. J Cell Physiol 199:157–170

    CAS  PubMed  Google Scholar 

  156. Ohnishi K, Scuric Z, Yau D, Schiestl RH, Okamoto N, Takahashi A, Ohnishi T (2006) Heat-induced phosphorylation of NBS1 in human skin fibroblast cells. J Cell Biochem 99:1642–1650

    CAS  PubMed  Google Scholar 

  157. Xian Ma Y, Fan S, Xiong J, Yuan RQ, Meng Q, Gao M, Goldberg ID, Fuqua SA, Pestell RG, Rosen EM (2003) Role of BRCA1 in heat shock response. Oncogene 22:10–27

    PubMed  Google Scholar 

  158. Eppink B, Krawczyk PM, Stap J, Kanaar R (2012) Hyperthermia-induced DNA repair deficiency suggests novel therapeutic anti-cancer strategies. Int J Hyperth 28:509–517

    CAS  Google Scholar 

  159. Kampinga HH, Dynlacht JR, Dikomey E (2004) Mechanism of radiosensitization by hyperthermia (> or = 43 degrees C) as derived from studies with DNA repair defective mutant cell lines. Int J Hyperth 20:131–139

    CAS  Google Scholar 

  160. Batuello CN, Kelley MR, Dynlacht JR (2009) Role of Ape1 and base excision repair in the radioresponse and heat-radiosensitization of HeLa Cells. Anticancer Res 29:1319–1325

    CAS  PubMed  Google Scholar 

  161. Dynlacht JR, Batuello CN, Lopez JT, Kim KK, Turchi JJ (2011) Identification of Mre11 as a target for heat radiosensitization. Radiat Res 176:323–332

    CAS  PubMed  Google Scholar 

  162. Pandita TK, Pandita S, Bhaumik SR (2009) Molecular parameters of hyperthermia for radiosensitization. Crit Rev Eukaryot Gene Expr 19:235–251

    CAS  PubMed  Google Scholar 

  163. Iliakis G, Wu W, Wang M (2008) DNA double-strand break repair inhibition as a cause of heat radiosensitization: re-evaluation considering backup pathways of NHEJ. Int J Hyperth 24:17–29

    CAS  Google Scholar 

  164. Jorritsma JB, Konings AW (1984) The occurrence of DNA strand breaks after hyperthermic treatments of mammalian cells with and without radiation. Radiat Res 98:198–208

    CAS  PubMed  Google Scholar 

  165. Warters RL, Brizgys LM, Axtell-Bartlett J (1985) DNA damage production in CHO cells at elevated temperatures. J Cell Physiol 124:481–486

    CAS  PubMed  Google Scholar 

  166. Hunt CR, Pandita RK, Laszlo A, Higashikubo R, Agarwal M, Kitamura T, Gupta A, Rief N, Horikoshi N, Baskaran R, Lee JH, Lobrich M, Paull TT, Roti Roti JL, Pandita TK (2007) Hyperthermia activates a subset of ataxia-telangiectasia mutated effectors independent of DNA strand breaks and heat shock protein 70 status. Cancer Res 67:3010–3017

    CAS  PubMed  Google Scholar 

  167. Kaneko H, Igarashi K, Kataoka K, Miura M (2005) Heat shock induces phosphorylation of histone H2AX in mammalian cells. Biochem Biophys Res Commun 328:1101–1106

    CAS  PubMed  Google Scholar 

  168. Laszlo A, Fleischer I (2009) The heat-induced gamma-H2AX response does not play a role in hyperthermic cell killing. Int J Hyperth 25:199–209

    CAS  Google Scholar 

  169. Takahashi A, Mori E, Somakos GI, Ohnishi K, Ohnishi T (2008) Heat induces gammaH2AX foci formation in mammalian cells. Mutat Res 656:88–92

    CAS  PubMed  Google Scholar 

  170. Rogakou EP, Boon C, Redon C, Bonner WM (1999) Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol 146:905–916

    CAS  PubMed  Google Scholar 

  171. Velichko AK, Petrova NV, Kantidze OL, Razin SV (2012) Dual effect of heat shock on DNA replication and genome integrity. Mol Biol Cell 23:3450–3460

    CAS  PubMed  Google Scholar 

  172. Bruskov VI, Malakhova LV, Masalimov ZK, Chernikov AV (2002) Heat-induced formation of reactive oxygen species and 8-oxoguanine, a biomarker of damage to DNA. Nucleic Acids Res 30:1354–1363

    CAS  PubMed  Google Scholar 

  173. Gasior SL, Wakeman TP, Xu B, Deininger PL (2006) The human LINE-1 retrotransposon creates DNA double-strand breaks. J Mol Biol 357:1383–1393

    CAS  PubMed  Google Scholar 

  174. Morales JF, Snow ET, Murnane JP (2003) Environmental factors affecting transcription of the human L1 retrotransposon. II. Stressors. Mutagenesis 18:151–158

    CAS  PubMed  Google Scholar 

  175. Vilenchik MM, Knudson AG (2003) Endogenous DNA double-strand breaks: production, fidelity of repair, and induction of cancer. Proc Natl Acad Sci USA 100:12871–12876

    CAS  PubMed  Google Scholar 

  176. Warters RL, Stone OL (1983) The effects of hyperthermia on DNA replication in HeLa cells. Radiat Res 93:71–84

    CAS  PubMed  Google Scholar 

  177. Warters RL, Stone OL (1984) Histone protein and DNA synthesis in HeLa cells after thermal shock. J Cell Physiol 118:153–160

    CAS  PubMed  Google Scholar 

  178. Wong RS, Kapp LN, Dewey WC (1989) DNA fork displacement rate measurements in heated Chinese hamster ovary cells. Biochim Biophys Acta 1007:224–227

    CAS  PubMed  Google Scholar 

  179. Warters RL, Lyons BW (1990) Inhibition of replicon cluster ligation into chromosomal DNA at elevated temperatures. J Cell Physiol 142:365–371

    CAS  PubMed  Google Scholar 

  180. Iliakis G, Krieg T, Guan J, Wang Y, Leeper D (2004) Evidence for an S-phase checkpoint regulating DNA replication after heat shock: a review. Int J Hyperth 20:240–249

    CAS  Google Scholar 

  181. Wang Y, Perrault AR, Iliakis G (1998) Replication protein A as a potential regulator of DNA replication in cells exposed to hyperthermia. Radiat Res 149:284–293

    CAS  PubMed  Google Scholar 

  182. Daniely Y, Borowiec JA (2000) Formation of a complex between nucleolin and replication protein A after cell stress prevents initiation of DNA replication. J Cell Biol 149:799–810

    CAS  PubMed  Google Scholar 

  183. Shao RG, Cao CX, Zhang H, Kohn KW, Wold MS, Pommier Y (1999) Replication-mediated DNA damage by camptothecin induces phosphorylation of RPA by DNA-dependent protein kinase and dissociates RPA:DNA-PK complexes. EMBO J 18:1397–1406

    CAS  PubMed  Google Scholar 

  184. Dewey WC, Westra A, Miller HH, Nagasawa H (1971) Heat-induced lethality and chromosomal damage in synchronized Chinese hamster cells treated with 5-bromodeoxyuridine. Int J Radiat Biol Relat Stud Phys Chem Med 20:505–520

    CAS  PubMed  Google Scholar 

  185. Wong RS, Thompson LL, Dewey WC (1988) Recovery from effects of heat on DNA synthesis in Chinese hamster ovary cells. Radiat Res 114:125–137

    CAS  PubMed  Google Scholar 

  186. Bhuyan BK (1979) Kinetics of cell kill by hyperthermia. Cancer Res 39:2277–2284

    CAS  PubMed  Google Scholar 

  187. VanderWaal RP, Griffith CL, Wright WD, Borrelli MJ, Roti JL (2001) Delaying S-phase progression rescues cells from heat-induced S-phase hypertoxicity. J Cell Physiol 187:236–243

    CAS  PubMed  Google Scholar 

  188. Roti Roti JL (2008) Cellular responses to hyperthermia (40–46 degrees C): cell killing and molecular events. Int J Hyperth 24:3–15

    Google Scholar 

  189. Goloudina AR, Demidov ON, Garrido C (2012) Inhibition of HSP70: a challenging anti-cancer strategy. Cancer Lett 325:117–124

    CAS  PubMed  Google Scholar 

  190. Velichko AK, Kantidze OL, Razin SV (2011) HP1alpha is not necessary for the structural maintenance of centromeric heterochromatin. Epigenetics 6:380–387

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the Ministry of Science and Education of the Russian Federation (8126, 8052), grants from the Russian Foundation for Basic Research (12-04-33040, 13-04-00604), and a grant from the Presidium of the Russian Academy of Sciences (MCB grant).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar L. Kantidze.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velichko, A.K., Markova, E.N., Petrova, N.V. et al. Mechanisms of heat shock response in mammals. Cell. Mol. Life Sci. 70, 4229–4241 (2013). https://doi.org/10.1007/s00018-013-1348-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1348-7

Keywords

Navigation