Skip to main content

Advertisement

Log in

A star is born: new insights into the mechanism of astrogenesis

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Astrocytes emerge as crucial cells for proper neuronal functioning in the developing and adult brain. Neurons and astrocytes are sequentially generated from the same pool of neural stem cells (NSCs). Tight regulation of the neuron-to-astrocyte switch is critical for (1) the generation of a balanced number of astrocytes and neurons and (2) neuronal circuit formation, since newborn astrocytes regulate synapse formation. This review focuses on signaling pathways that instruct astrogenesis, incorporating recently discovered intrinsic and extrinsic regulators. The canonical pathway of astrocytic gene expression, JAK/STAT signaling, is inhibited during neurogenesis to prevent premature astrocyte differentiation. At the onset of astrogenesis, Notch signaling induces epigenetic remodeling of astrocytic genes like glial fibrillary acidic protein to change NSC competence. In turn, astrogenesis is initiated by signals received from newborn neurons. We highlight how key molecular pathways like JAK/STAT and Notch are integrated in a complex network of environmental signals and epigenetic and transcriptional regulators to determine NSC differentiation. It is essential to understand NSC differentiation in respect to future NSC-based therapies for brain diseases, as transplanted NSCs preferentially become astrocytes. As emphasized in this review, many clues in this respect can be learned from development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:7–35. doi:10.1007/s00401-009-0619-8

    PubMed Central  PubMed  Google Scholar 

  2. Ullian EM, Sapperstein SK, Christopherson KS, Barres BA (2001) Control of synapse number by glia. Science 291:657–661. doi:10.1126/science.291.5504.657

    CAS  PubMed  Google Scholar 

  3. Eroglu C, Barres BA (2010) Regulation of synaptic connectivity by glia. Nature 468:223–231. doi:10.1038/nature09612

    CAS  PubMed  Google Scholar 

  4. Freeman MR (2010) Specification and morphogenesis of astrocytes. Science 330:774–778. doi:10.1126/science.1190928

    CAS  PubMed  Google Scholar 

  5. Derouet D, Rousseau F, Alfonsi F et al (2004) Neuropoietin, a new IL-6-related cytokine signaling through the ciliary neurotrophic factor receptor. Proc Natl Acad Sci USA 101:4827–4832. doi:10.1073/pnas.0306178101

    CAS  PubMed  Google Scholar 

  6. Uemura A, Takizawa T, Ochiai W et al (2002) Cardiotrophin-like cytokine induces astrocyte differentiation of fetal neuroepithelial cells via activation of STAT3. Cytokine 18:1–7

    CAS  PubMed  Google Scholar 

  7. Cheng P-Y, Lin Y-P, Chen Y-L et al (2011) Interplay between SIN3A and STAT3 mediates chromatin conformational changes and GFAP expression during cellular differentiation. PLoS One 6:e22018. doi:10.1371/journal.pone.0022018

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Sun Y, Nadal-Vicens M, Misono S et al (2001) Neurogenin promotes neurogenesis and inhibits glial differentiation by independent mechanisms. Cell 104:365–376

    CAS  PubMed  Google Scholar 

  9. He F, Ge W, Martinowich K et al (2005) A positive autoregulatory loop of Jak-STAT signaling controls the onset of astrogliogenesis. Nat Neurosci 8:616–625. doi:10.1038/nn1440

    CAS  PubMed  Google Scholar 

  10. Nieto M, Schuurmans C, Britz O, Guillemot F (2001) Neural bHLH genes control the neuronal versus glial fate decision in cortical progenitors. Neuron 29:401–413

    CAS  PubMed  Google Scholar 

  11. Tomita K, Moriyoshi K, Nakanishi S et al (2000) Mammalian achaete-scute and atonal homologs regulate neuronal versus glial fate determination in the central nervous system. EMBO J 19:5460–5472. doi:10.1093/emboj/19.20.5460

    CAS  PubMed  Google Scholar 

  12. Takizawa T, Nakashima K, Namihira M et al (2001) DNA methylation is a critical cell-intrinsic determinant of astrocyte differentiation in the fetal brain. Dev Cell 1:749–758

    CAS  PubMed  Google Scholar 

  13. Fan G, Martinowich K, Chin MH et al (2005) DNA methylation controls the timing of astrogliogenesis through regulation of JAK-STAT signaling. Development 132:3345–3356. doi:10.1242/dev.01912

    CAS  PubMed  Google Scholar 

  14. Namihira M, Nakashima K, Taga T (2004) Developmental stage dependent regulation of DNA methylation and chromatin modification in a immature astrocyte specific gene promoter. FEBS Lett 572:184–188. doi:10.1016/j.febslet.2004.07.029

    CAS  PubMed  Google Scholar 

  15. Jones PL, Veenstra GJ, Wade PA et al (1998) Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet 19:187–191. doi:10.1038/561

    CAS  PubMed  Google Scholar 

  16. Icardi L, Mori R, Gesellchen V et al (2012) The Sin3a repressor complex is a master regulator of STAT transcriptional activity. Proc Natl Acad Sci USA 109:12058–12063. doi:10.1073/pnas.1206458109

    CAS  PubMed  Google Scholar 

  17. Cao F, Hata R, Zhu P et al (2006) Overexpression of SOCS3 inhibits astrogliogenesis and promotes maintenance of neural stem cells. J Neurochem 98:459–470. doi:10.1111/j.1471-4159.2006.03890.x

    CAS  PubMed  Google Scholar 

  18. Gu F, Hata R, Ma Y-J et al (2005) Suppression of Stat3 promotes neurogenesis in cultured neural stem cells. J Neurosci Res 81:163–171. doi:10.1002/jnr.20561

    CAS  PubMed  Google Scholar 

  19. Cao F, Hata R, Zhu P et al (2010) Conditional deletion of Stat3 promotes neurogenesis and inhibits astrogliogenesis in neural stem cells. Biochem Biophys Res Commun 394:843–847. doi:10.1016/j.bbrc.2010.03.092

    CAS  PubMed  Google Scholar 

  20. Ménard C, Hein P, Paquin A et al (2002) An essential role for a MEK-C/EBP pathway during growth factor-regulated cortical neurogenesis. Neuron 36:597–610

    PubMed  Google Scholar 

  21. Neel BG, Gu H, Pao L (2003) The “Shp”ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends Biochem Sci 28:284–293. doi:10.1016/S0968-0004(03)00091-4

    CAS  PubMed  Google Scholar 

  22. Gauthier AS, Furstoss O, Araki T et al (2007) Control of CNS cell-fate decisions by SHP-2 and its dysregulation in Noonan syndrome. Neuron 54:245–262. doi:10.1016/j.neuron.2007.03.027

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Ernst M, Jenkins BJ (2004) Acquiring signalling specificity from the cytokine receptor gp130. Trends Genet 20:23–32. doi:10.1016/j.tig.2003.11.003

    CAS  PubMed  Google Scholar 

  24. Pruitt K, Ulkü AS, Frantz K et al (2005) Ras-mediated loss of the pro-apoptotic response protein Par-4 is mediated by DNA hypermethylation through Raf-independent and Raf-dependent signaling cascades in epithelial cells. J Biol Chem 280:23363–23370. doi:10.1074/jbc.M503083200

    CAS  PubMed  Google Scholar 

  25. Maisonpierre PC, Belluscio L, Friedman B et al (1990) NT-3, BDNF, and NGF in the developing rat nervous system: parallel as well as reciprocal patterns of expression. Neuron 5:501–509

    CAS  PubMed  Google Scholar 

  26. Barnabé-Heider F, Miller FD (2003) Endogenously produced neurotrophins regulate survival and differentiation of cortical progenitors via distinct signaling pathways. J Neurosci 23:5149–5160

    PubMed  Google Scholar 

  27. Tissir F, Goffinet AM (2003) Reelin and brain development. Nat Rev Neurosci 4:496–505. doi:10.1038/nrn1113

    CAS  PubMed  Google Scholar 

  28. Kwon I-S, Cho S-K, Kim M-J et al (2009) Expression of Disabled 1 suppresses astroglial differentiation in neural stem cells. Mol Cell Neurosci 40:50–61. doi:10.1016/j.mcn.2008.08.012

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Zhao S, Chai X, Frotscher M (2007) Balance between neurogenesis and gliogenesis in the adult hippocampus: role for Reelin. Dev Neurosci 29:84–90. doi:10.1159/000096213

    CAS  PubMed  Google Scholar 

  30. Piao C-S, Li B, Zhang L-J, Zhao L-R (2012) Stem cell factor and granulocyte colony-stimulating factor promote neuronal lineage commitment of neural stem cells. Differentiation 83:17–25. doi:10.1016/j.diff.2011.08.006

    CAS  PubMed  Google Scholar 

  31. Wang L, Zhang ZG, Zhang RL et al (2006) Neurogenin 1 mediates erythropoietin enhanced differentiation of adult neural progenitor cells. J Cereb Blood Flow Metab 26:556–564. doi:10.1038/sj.jcbfm.9600215

    PubMed  Google Scholar 

  32. Alnaeeli M, Wang L, Piknova B et al (2012) Erythropoietin in brain development and beyond. Anat Res Int 2012:953264. doi:10.1155/2012/953264

    PubMed Central  PubMed  Google Scholar 

  33. Sardi SP, Murtie J, Koirala S et al (2006) Presenilin-dependent ErbB4 nuclear signaling regulates the timing of astrogenesis in the developing brain. Cell 127:185–197. doi:10.1016/j.cell.2006.07.037

    CAS  PubMed  Google Scholar 

  34. Fox IJ, Kornblum HI (2005) Developmental profile of ErbB receptors in murine central nervous system: implications for functional interactions. J Neurosci Res 79:584–597. doi:10.1002/jnr.20381

    CAS  PubMed  Google Scholar 

  35. Mei L, Xiong W-C (2008) Neuregulin 1 in neural development, synaptic plasticity and schizophrenia. Nat Rev Neurosci 9:437–452. doi:10.1038/nrn2392

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705. doi:10.1016/j.cell.2007.02.005

    CAS  PubMed  Google Scholar 

  37. Hirabayashi Y, Suzki N, Tsuboi M et al (2009) Polycomb limits the neurogenic competence of neural precursor cells to promote astrogenic fate transition. Neuron 63:600–613. doi:10.1016/j.neuron.2009.08.021

    CAS  PubMed  Google Scholar 

  38. Schwartz YB, Pirrotta V (2007) Polycomb silencing mechanisms and the management of genomic programmes. Nat Rev Genet 8:9–22. doi:10.1038/nrg1981

    CAS  PubMed  Google Scholar 

  39. Yuan Z-L, Guan Y-J, Chatterjee D, Chin YE (2005) Stat3 dimerization regulated by reversible acetylation of a single lysine residue. Science 307:269–273. doi:10.1126/science.1105166

    CAS  PubMed  Google Scholar 

  40. Wilczynska KM, Singh SK, Adams B et al (2009) Nuclear factor I isoforms regulate gene expression during the differentiation of human neural progenitors to astrocytes. Stem Cells 27:1173–1181. doi:10.1002/stem.35

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Cebolla B, Vallejo M (2006) Nuclear factor-I regulates glial fibrillary acidic protein gene expression in astrocytes differentiated from cortical precursor cells. J Neurochem 97:1057–1070. doi:10.1111/j.1471-4159.2006.03804.x

    CAS  PubMed  Google Scholar 

  42. Namihira M, Kohyama J, Semi K et al (2009) Committed neuronal precursors confer astrocytic potential on residual neural precursor cells. Dev Cell 16:245–255. doi:10.1016/j.devcel.2008.12.014

    CAS  PubMed  Google Scholar 

  43. Das Neves L, Duchala CS, Tolentino-Silva F et al (1999) Disruption of the murine nuclear factor I-A gene (Nfia) results in perinatal lethality, hydrocephalus, and agenesis of the corpus callosum. Proc Natl Acad Sci USA 96:11946–11951

    CAS  PubMed  Google Scholar 

  44. Steele-Perkins G, Plachez C, Butz KG et al (2005) The transcription factor gene Nfib is essential for both lung maturation and brain development. Mol Cell Biol 25:685–698. doi:10.1128/MCB.25.2.685-698.2005

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Shu T, Butz KG, Plachez C et al (2003) Abnormal development of forebrain midline glia and commissural projections in Nfia knock-out mice. J Neurosci 23:203–212

    CAS  PubMed  Google Scholar 

  46. Song M-R, Ghosh A (2004) FGF2-induced chromatin remodeling regulates CNTF-mediated gene expression and astrocyte differentiation. Nat Neurosci 7:229–235. doi:10.1038/nn1192

    PubMed  Google Scholar 

  47. Irmady K, Zechel S, Unsicker K (2011) Fibroblast growth factor 2 regulates astrocyte differentiation in a region-specific manner in the hindbrain. Glia 59:708–719. doi:10.1002/glia.21141

    PubMed  Google Scholar 

  48. Nishioka K, Rice JC, Sarma K et al (2002) PR-Set7 is a nucleosome-specific methyltransferase that modifies lysine 20 of histone H4 and is associated with silent chromatin. Mol Cell 9:1201–1213

    CAS  PubMed  Google Scholar 

  49. Haskell GT, LaMantia A-S (2005) Retinoic acid signaling identifies a distinct precursor population in the developing and adult forebrain. J Neurosci 25:7636–7647. doi:10.1523/JNEUROSCI.0485-05.2005

    CAS  PubMed  Google Scholar 

  50. Mizee MR, Wooldrik D, Lakeman KAM et al (2013) Retinoic acid induces blood–brain barrier development. J Neurosci 33:1660–1671. doi:10.1523/JNEUROSCI.1338-12.2013

    CAS  PubMed  Google Scholar 

  51. Rossant J, Zirngibl R, Cado D et al (1991) Expression of a retinoic acid response element-hsplacZ transgene defines specific domains of transcriptional activity during mouse embryogenesis. Genes Dev 5:1333–1344

    CAS  PubMed  Google Scholar 

  52. Jepsen K, Solum D, Zhou T et al (2007) SMRT-mediated repression of an H3K27 demethylase in progression from neural stem cell to neuron. Nature 450:415–419. doi:10.1038/nature06270

    CAS  PubMed  Google Scholar 

  53. Asano H, Aonuma M, Sanosaka T et al (2009) Astrocyte differentiation of neural precursor cells is enhanced by retinoic acid through a change in epigenetic modification. Stem Cells 27:2744–2752. doi:10.1002/stem.176

    CAS  PubMed  Google Scholar 

  54. Malatesta P, Hartfuss E, Gotz M (2000) Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development 127:5253–5263

    CAS  PubMed  Google Scholar 

  55. Guruharsha KG, Kankel MW, Artavanis-Tsakonas S (2012) The Notch signalling system: recent insights into the complexity of a conserved pathway. Nat Rev Genet 13:654–666. doi:10.1038/nrg3272

    CAS  PubMed  Google Scholar 

  56. Kopan R, Ilagan MXG (2009) The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137:216–233. doi:10.1016/j.cell.2009.03.045

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Yoshimatsu T, Kawaguchi D, Oishi K et al (2006) Non-cell-autonomous action of STAT3 in maintenance of neural precursor cells in the mouse neocortex. Development 133:2553–2563. doi:10.1242/dev.02419

    CAS  PubMed  Google Scholar 

  58. Kamakura S, Oishi K, Yoshimatsu T et al (2004) Hes binding to STAT3 mediates crosstalk between Notch and JAK-STAT signalling. Nat Cell Biol 6:547–554. doi:10.1038/ncb1138

    CAS  PubMed  Google Scholar 

  59. Piper M, Barry G, Hawkins J et al (2010) NFIA controls telencephalic progenitor cell differentiation through repression of the Notch effector Hes1. J Neurosci 30:9127–9139. doi:10.1523/JNEUROSCI.6167-09.2010

    CAS  PubMed  Google Scholar 

  60. Monuki ES, Porter FD, Walsh CA (2001) Patterning of the dorsal telencephalon and cerebral cortex by a roof plate-Lhx2 pathway. Neuron 32:591–604

    CAS  PubMed  Google Scholar 

  61. Subramanian L, Sarkar A, Shetty AS et al (2011) Transcription factor Lhx2 is necessary and sufficient to suppress astrogliogenesis and promote neurogenesis in the developing hippocampus. Proc Natl Acad Sci USA 108:E265–E274. doi:10.1073/pnas.1101109108

    CAS  PubMed  Google Scholar 

  62. Brancaccio M, Pivetta C, Granzotto M et al (2010) Emx2 and Foxg1 inhibit gliogenesis and promote neuronogenesis. Stem Cells 28:1206–1218. doi:10.1002/stem.443

    CAS  PubMed  Google Scholar 

  63. Gangemi RMR, Daga A, Muzio L et al (2006) Effects of Emx2 inactivation on the gene expression profile of neural precursors. Eur J Neurosci 23:325–334. doi:10.1111/j.1460-9568.2005.04559.x

    PubMed  Google Scholar 

  64. Stolt CC, Lommes P, Sock E et al (2003) The Sox9 transcription factor determines glial fate choice in the developing spinal cord. Genes Dev 17:1677–1689. doi:10.1101/gad.259003

    CAS  PubMed  Google Scholar 

  65. Kang P, Lee HK, Glasgow SM et al (2012) Sox9 and NFIA coordinate a transcriptional regulatory cascade during the initiation of gliogenesis. Neuron 74:79–94. doi:10.1016/j.neuron.2012.01.024

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Welcker M, Clurman BE (2008) FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nat Rev Cancer 8:83–93. doi:10.1038/nrc2290

    CAS  PubMed  Google Scholar 

  67. Hoeck JD, Jandke A, Blake SM et al (2010) Fbw7 controls neural stem cell differentiation and progenitor apoptosis via Notch and c-Jun. Nat Neurosci 13:1365–1372. doi:10.1038/nn.2644

    CAS  PubMed  Google Scholar 

  68. Matsumoto A, Onoyama I, Sunabori T et al (2011) Fbxw7-dependent degradation of Notch is required for control of “stemness” and neuronal-glial differentiation in neural stem cells. J Biol Chem 286:13754–13764. doi:10.1074/jbc.M110.194936

    CAS  PubMed  Google Scholar 

  69. Moore KA, Hollien J (2012) The unfolded protein response in secretory cell function. Annu Rev Genet 46:165–183. doi:10.1146/annurev-genet-110711-155644

    CAS  PubMed  Google Scholar 

  70. Saito A, Kanemoto S, Kawasaki N et al (2012) Unfolded protein response, activated by OASIS family transcription factors, promotes astrocyte differentiation. Nat Commun 3:967. doi:10.1038/ncomms1971

    PubMed  Google Scholar 

  71. Barnabé-Heider F, Wasylnka JA, Fernandes KJL et al (2005) Evidence that embryonic neurons regulate the onset of cortical gliogenesis via cardiotrophin-1. Neuron 48:253–265. doi:10.1016/j.neuron.2005.08.037

    PubMed  Google Scholar 

  72. Bugga L, Gadient RA, Kwan K et al (1998) Analysis of neuronal and glial phenotypes in brains of mice deficient in leukemia inhibitory factor. J Neurobiol 36:509–524

    CAS  PubMed  Google Scholar 

  73. Miller FD, Gauthier AS (2007) Timing is everything: making neurons versus glia in the developing cortex. Neuron 54:357–369. doi:10.1016/j.neuron.2007.04.019

    CAS  PubMed  Google Scholar 

  74. Bonni A, Sun Y, Nadal-Vicens M et al (1997) Regulation of gliogenesis in the central nervous system by the JAK-STAT signaling pathway. Science 278:477–483

    CAS  PubMed  Google Scholar 

  75. Stahl N, Yancopoulos GD (1994) The tripartite CNTF receptor complex: activation and signaling involves components shared with other cytokines. J Neurobiol 25:1454–1466. doi:10.1002/neu.480251111

    CAS  PubMed  Google Scholar 

  76. Nakashima K, Yanagisawa M, Arakawa H, Taga T (1999) Astrocyte differentiation mediated by LIF in cooperation with BMP2. FEBS Lett 457:43–46

    CAS  PubMed  Google Scholar 

  77. Bonaguidi MA, McGuire T, Hu M et al (2005) LIF and BMP signaling generate separate and discrete types of GFAP-expressing cells. Development 132:5503–5514. doi:10.1242/dev.02166

    CAS  PubMed  Google Scholar 

  78. Gross RE, Mehler MF, Mabie PC et al (1996) Bone morphogenetic proteins promote astroglial lineage commitment by mammalian subventricular zone progenitor cells. Neuron 17:595–606

    CAS  PubMed  Google Scholar 

  79. Li W, Cogswell CA, LoTurco JJ (1998) Neuronal differentiation of precursors in the neocortical ventricular zone is triggered by BMP. J Neurosci 18:8853–8862

    CAS  PubMed  Google Scholar 

  80. Nakashima K, Takizawa T, Ochiai W et al (2001) BMP2-mediated alteration in the developmental pathway of fetal mouse brain cells from neurogenesis to astrocytogenesis. Proc Natl Acad Sci USA 98:5868–5873. doi:10.1073/pnas.101109698

    CAS  PubMed  Google Scholar 

  81. Fukuda S, Taga T (2005) Cell fate determination regulated by a transcriptional signal network in the developing mouse brain. Anat Sci Int 80:12–18. doi:10.1111/j.1447-073x.2005.00097.x

    CAS  PubMed  Google Scholar 

  82. Ortega JA, Alcántara S (2010) BDNF/MAPK/ERK-induced BMP7 expression in the developing cerebral cortex induces premature radial glia differentiation and impairs neuronal migration. Cereb Cortex 20:2132–2144. doi:10.1093/cercor/bhp275

    PubMed  Google Scholar 

  83. Miller MW (2003) Expression of transforming growth factor-beta in developing rat cerebral cortex: effects of prenatal exposure to ethanol. J Comp Neurol 460:410–424. doi:10.1002/cne.10658

    CAS  PubMed  Google Scholar 

  84. De Sampaio e Spohr TCL, Martinez R, da Silva EF et al (2002) Neuro-glia interaction effects on GFAP gene: a novel role for transforming growth factor-beta1. Eur J Neurosci 16:2059–2069

    PubMed  Google Scholar 

  85. Stipursky J, Gomes FCA (2007) TGF-beta1/SMAD signaling induces astrocyte fate commitment in vitro: implications for radial glia development. Glia 55:1023–1033. doi:10.1002/glia.20522

    PubMed  Google Scholar 

  86. Stipursky J, Francis D, Gomes FCA (2012) Activation of MAPK/PI3 K/SMAD pathways by TGF-β(1) controls differentiation of radial glia into astrocytes in vitro. Dev Neurosci 34:68–81. doi:10.1159/000338108

    CAS  PubMed  Google Scholar 

  87. Yamaguchi K, Shirakabe K, Shibuya H et al (1995) Identification of a member of the MAPKKK family as a potential mediator of TGF-beta signal transduction. Science 270:2008–2011

    CAS  PubMed  Google Scholar 

  88. Vallejo M (2009) PACAP signaling to DREAM: a cAMP-dependent pathway that regulates cortical astrogliogenesis. Mol Neurobiol 39:90–100. doi:10.1007/s12035-009-8055-2

    CAS  PubMed  Google Scholar 

  89. Conaco C, Otto S, Han J–J, Mandel G (2006) Reciprocal actions of REST and a microRNA promote neuronal identity. Proc Natl Acad Sci USA 103:2422–2427. doi:10.1073/pnas.0511041103

    CAS  PubMed  Google Scholar 

  90. Lunyak VV, Burgess R, Prefontaine GG et al (2002) Corepressor-dependent silencing of chromosomal regions encoding neuronal genes. Science 298:1747–1752. doi:10.1126/science.1076469

    CAS  PubMed  Google Scholar 

  91. Abrajano JJ, Qureshi IA, Gokhan S et al (2009) Differential deployment of REST and CoREST promotes glial subtype specification and oligodendrocyte lineage maturation. PLoS One 4:e7665. doi:10.1371/journal.pone.0007665

    PubMed Central  PubMed  Google Scholar 

  92. Kohyama J, Sanosaka T, Tokunaga A et al (2010) BMP-induced REST regulates the establishment and maintenance of astrocytic identity. J Cell Biol 189:159–170. doi:10.1083/jcb.200908048

    CAS  PubMed  Google Scholar 

  93. Huang Y, Myers SJ, Dingledine R (1999) Transcriptional repression by REST: recruitment of Sin3A and histone deacetylase to neuronal genes. Nat Neurosci 2:867–872. doi:10.1038/13165

    CAS  PubMed  Google Scholar 

  94. Verwer RWH, Sluiter AA, Balesar RA et al (2007) Mature astrocytes in the adult human neocortex express the early neuronal marker doublecortin. Brain 130:3321–3335. doi:10.1093/brain/awm264

    CAS  PubMed  Google Scholar 

  95. Laywell ED, Kearns SM, Zheng T et al (2005) Neuron-to-astrocyte transition: phenotypic fluidity and the formation of hybrid asterons in differentiating neurospheres. J Comp Neurol 493:321–333. doi:10.1002/cne.20722

    PubMed Central  PubMed  Google Scholar 

  96. Kamphuis W, Mamber C, Moeton M et al (2012) GFAP isoforms in adult mouse brain with a focus on neurogenic astrocytes and reactive astrogliosis in mouse models of Alzheimer disease. PLoS One 7:e42823. doi:10.1371/journal.pone.0042823

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Doetsch F, Caillé I, Lim DA et al (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97:703–716. doi:10.1016/S0092-8674(00)80783-7

    CAS  PubMed  Google Scholar 

  98. Calegari F, Huttner WB (2003) An inhibition of cyclin-dependent kinases that lengthens, but does not arrest, neuroepithelial cell cycle induces premature neurogenesis. J Cell Sci 116:4947–4955. doi:10.1242/jcs.00825

    CAS  PubMed  Google Scholar 

  99. Tury A, Mairet-Coello G, DiCicco-Bloom E (2011) The cyclin-dependent kinase inhibitor p57Kip2 regulates cell cycle exit, differentiation, and migration of embryonic cerebral cortical precursors. Cereb Cortex 21:1840–1856. doi:10.1093/cercor/bhq254

    PubMed  Google Scholar 

  100. Andreu-Agullo C, Maurin T, Thompson CB, Lai EC (2012) Ars2 maintains neural stem-cell identity through direct transcriptional activation of Sox2. Nature 481:195–198. doi:10.1038/nature10712

    CAS  Google Scholar 

  101. Zencak D, Lingbeek M, Kostic C et al (2005) Bmi1 loss produces an increase in astroglial cells and a decrease in neural stem cell population and proliferation. J Neurosci 25:5774–5783. doi:10.1523/JNEUROSCI.3452-04.2005

    CAS  PubMed  Google Scholar 

  102. Rowitch DH, Kriegstein AR (2010) Developmental genetics of vertebrate glial—cell specification. Nature 468:214–222. doi:10.1038/nature09611

    CAS  PubMed  Google Scholar 

  103. Ge W-P, Miyawaki A, Gage FH et al (2012) Local generation of glia is a major astrocyte source in postnatal cortex. Nature 484:376–380. doi:10.1038/nature10959

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Martini S, Bernoth K, Main H et al (2013) A critical role for Sox9 in Notch-induced astrogliogenesis and stem cell maintenance. Stem Cells 31:741–751. doi:10.1002/stem.1320

    CAS  PubMed  Google Scholar 

  105. Krencik R, Weick JP, Liu Y et al (2011) Specification of transplantable astroglial subtypes from human pluripotent stem cells. Nat Biotechnol 29:528–534. doi:10.1038/nbt.1877

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Emdad L, D’Souza SL, Kothari HP et al (2012) Efficient differentiation of human embryonic and induced pluripotent stem cells into functional astrocytes. Stem Cells Dev 21:404–410. doi:10.1089/scd.2010.0560

    CAS  PubMed  Google Scholar 

  107. Shaltouki A, Peng J, Liu Q et al (2013) Efficient generation of astrocytes from human pluripotent stem cells in defined conditions. Stem Cells. doi:10.1002/stem.1334

    PubMed  Google Scholar 

  108. Ideguchi M, Shinoyama M, Gomi M et al (2008) Immune or inflammatory response by the host brain suppresses neuronal differentiation of transplanted ES cell-derived neural precursor cells. J Neurosci Res 86:1936–1943. doi:10.1002/jnr.21652

    CAS  PubMed  Google Scholar 

  109. Nakanishi M, Niidome T, Matsuda S et al (2007) Microglia-derived interleukin-6 and leukaemia inhibitory factor promote astrocytic differentiation of neural stem/progenitor cells. Eur J Neurosci 25:649–658. doi:10.1111/j.1460-9568.2007.05309.x

    PubMed  Google Scholar 

  110. Faijerson J, Tinsley RB, Apricó K et al (2006) Reactive astrogliosis induces astrocytic differentiation of adult neural stem/progenitor cells in vitro. J Neurosci Res 84:1415–1424. doi:10.1002/jnr.21044

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Carlyn Mamber for her advice and stimulating discussions. This project is funded by the Netherlands Organization for Scientific Research (NWO; VICI grant to E.M.H. (865.09.003)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elly M. Hol.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanski, R., van Strien, M.E., van Tijn, P. et al. A star is born: new insights into the mechanism of astrogenesis. Cell. Mol. Life Sci. 71, 433–447 (2014). https://doi.org/10.1007/s00018-013-1435-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1435-9

Keywords

Navigation