Skip to main content

Advertisement

Log in

The FHIT gene product: tumor suppressor and genome “caretaker”

  • Multi-author review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The FHIT gene at FRA3B is one of the earliest and most frequently altered genes in the majority of human cancers. It was recently discovered that the FHIT gene is not the most fragile locus in epithelial cells, the cell of origin for most Fhit-negative cancers, eroding support for past claims that deletions at this locus are simply passenger events that are carried along in expanding cancer clones, due to extreme vulnerability to DNA damage rather than to loss of FHIT function. Indeed, recent reports have reconfirmed FHIT as a tumor suppressor gene with roles in apoptosis and prevention of the epithelial–mesenchymal transition. Other recent works have identified a novel role for the FHIT gene product, Fhit, as a genome “caretaker.” Loss of this caretaker function leads to nucleotide imbalance, spontaneous replication stress, and DNA breaks. Because Fhit loss-induced DNA damage is “checkpoint blind,” cells accumulate further DNA damage during subsequent cell cycles, accruing global genome instability that could facilitate oncogenic mutation acquisition and expedite clonal expansion. Loss of Fhit activity therefore induces a mutator phenotype. Evidence for FHIT as a mutator gene is discussed in light of these recent investigations of Fhit loss and subsequent genome instability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Durkin SG, Glover TW (2007) Chromosome fragile sites. Annu Rev Genet 41:169–192

    Article  CAS  PubMed  Google Scholar 

  2. Yunis JJ, Soreng AL (1984) Constitutive fragile sites and cancer. Science 226:1199–1204

    Article  CAS  PubMed  Google Scholar 

  3. Letessier A, Millot GA, Koundrioukoff S, Lachagès AM, Vogt N, Hansen RS, Malfoy B, Brison O, Debatisse M (2011) Cell-type-specific replication initiation programs set fragility of the FRA3B fragile site. Nature 470:120–123

    Article  CAS  PubMed  Google Scholar 

  4. Hosseini SA, Horton S, Saldivar JC, Miuma S, Stampfer MR, Heerema NA, Huebner K (2013) Common chromosome fragile sites in human and murine epithelial cells and FHIT/FRA3B loss-induced global genome instability. Gene Chromosome Cancer 52(11):1017–1029

    Article  CAS  Google Scholar 

  5. Le Tallec B, Millot GA, Blin ME, Brison O, Dutrillaux B, Debatisse M (2013) Common fragile site profiling in epithelial and erythroid cells reveals that most recurrent cancer deletions lie in fragile sites hosting large genes. Cell Rep 4(3):420–428

    Article  PubMed  Google Scholar 

  6. Saldivar JC, Shibata H, Huebner K (2010) Pathology and biology associated with the fragile FHIT gene and gene product. J Cell Biochem 109:858–865

    CAS  PubMed  Google Scholar 

  7. Saldivar JC, Miuma S, Bene J, Hosseini SA, Shibata H, Sun J, Wheeler LJ, Mathews CK, Huebner K (2012) Initiation of genome instability and preneoplastic processes through loss of Fhit expression. PLoS Genet 8:e1003077

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Miuma S, Saldivar JC, Karras JR, Waters CE, Paisie CA, Wang Y, Jin V, Sun J, Druck T, Zhang J, Huebner K (2013) Fhit deficiency-induced global genome instability promotes mutation and clonal expansion. PLoS ONE 8(11):e80730

    Article  PubMed Central  PubMed  Google Scholar 

  9. Holbach LM, von Moller A, Decker C, Jünemann AG, Rummelt-Hofmann C, Ballhausen WG (2002) Loss of fragile histidine triad (FHIT) expression and microsatellite instability in periocular sebaceous gland carcinoma in patients with Muir-Torre syndrome. Am J Ophthalmol 134(1):147–148

    Article  PubMed  Google Scholar 

  10. Goldberg M, Rummelt C, Foja S, Holbach LM, Ballhausen WG (2006) Different genetic pathways in the development of periocular sebaceous gland carcinomas in presumptive Muir-Torre syndrome patients. Hum Mutat 27(2):155–162

    Article  CAS  PubMed  Google Scholar 

  11. Huebner K, Garrison PN, Barnes LD, Croce CM (1998) The role of the FHIT/FRA3B locus in cancer. Annu Rev Genet 32:7–31

    Article  CAS  PubMed  Google Scholar 

  12. Durkin SG, Ragland RL, Arlt MF, Mulle JG, Warren ST, Glover TW (2008) Replication stress induces tumor-like microdeletions in FHIT/FRA3B. Proc Natl Acad Sci USA 105:246–251

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Guler G, Uner A, Guler N, Han SY, Iliopoulos D, McCue P, Huebner K (2005) Concordant loss of fragile gene expression early in breast cancer development. Pathol Int 55:471–478

    Article  CAS  PubMed  Google Scholar 

  14. Michael D, Beer DG, Wilke CW, Miller DE, Glover TW (1997) Frequent deletions of FHIT and FRA3B in Barrett’s metaplasia and esophageal adenocarcinomas. Oncogene 15:1653–1659

    Article  CAS  PubMed  Google Scholar 

  15. Sozzi G, Pastorino U, Moiraghi L, Tagliabue E, Pezzella F, Ghirelli C, Tornielli S, Sard L, Huebner K, Pierotti M et al (1998) Loss of FHIT function in lung cancer and preinvasive bronchial lesions. Cancer Res 58:5032–5037

    CAS  PubMed  Google Scholar 

  16. Mao L, Lee JS, Kurie JM, Fan YH, Lippman SM, Lee JJ, Ro JY, Broxson A, Yu R, Morice RC et al (1997) Clonal genetic alterations in the lungs of current and former smokers. J Natl Cancer Inst 89:857–862

    Article  CAS  PubMed  Google Scholar 

  17. Ahmadian M, Wistuba II, Fong KM, Behrens C, Kodagoda DR, Saboorian MH, Shay J, Tomlinson GE, Blum J, Minna JD et al (1997) Analysis of the FHIT gene and FRA3B region in sporadic breast cancer, preneoplastic lesions, and familial breast cancer probands. Cancer Res 57:3664–3668

    CAS  PubMed  Google Scholar 

  18. Kitamura A, Yashima K, Okamoto E, Andachi H, Hosoda A, Kishimoto Y, Shiota G, Ito H, Kaibara N, Kawasaki H (2001) Reduced Fhit expression occurs in the early stage of esophageal tumorigenesis: no correlation with p53 expression and apoptosis. Oncology 61:205–211

    Article  CAS  PubMed  Google Scholar 

  19. Mori M, Mimori K, Shiraishi T, Alder H, Inoue H, Tanaka Y, Sugimachi K, Huebner K, Croce CM (2000) Altered expression of Fhit in carcinoma and precarcinomatous lesions of the esophagus. Cancer Res 60:1177–1182

    CAS  PubMed  Google Scholar 

  20. Birrer MJ, Hendricks D, Farley J, Sundborg MJ, Bonome T, Walts MJ, Geradts J (1999) Abnormal Fhit expression in malignant and premalignant lesions of the cervix. Cancer Res 59:5270–5274

    CAS  PubMed  Google Scholar 

  21. Butler D, Collins C, Mabruk M, Leader MB, Kay EW (2002) Loss of Fhit expression as a potential marker of malignant progression in preinvasive squamous cervical cancer. Gynecol Oncol 86:144–149

    Article  CAS  PubMed  Google Scholar 

  22. Yuge T, Nibu K, Kondo K, Shibahara J, Tayama N, Sugasawa M (2005) Loss of FHIT expression in squamous cell carcinoma and premalignant lesions of the larynx. Ann Otol Rhinol Laryngol 114:127–131

    Article  PubMed  Google Scholar 

  23. Luan X, Ramesh KH, Cannizzaro LA (1998) FHIT gene transcript alterations occur frequently in myeloproliferative and myelodysplastic diseases. Cytogenet Cell Genet 81:183–188

    Article  CAS  PubMed  Google Scholar 

  24. Ozkara SK, Corakçi A (2005) FHIT expression in neoplastic, hyperplastic, and normal endometrium. Int J Gynecol Cancer 15:1081–1088

    Article  CAS  PubMed  Google Scholar 

  25. Velickovic M, Delahunt B, Grebe SK (1999) Loss of heterozygosity at 3p14.2 in clear cell renal cell carcinoma is an early event and is highly localized to the FHIT gene locus. Cancer Res 59:1323–1326

    CAS  PubMed  Google Scholar 

  26. Fong LY, Fidanza V, Zanesi N, Lock LF, Siracusa LD, Mancini R, Siprashvili Z, Ottey M, Martin SE, Druck T et al (2000) Muir-Torre-like syndrome in Fhit-deficient mice. Proc Natl Acad Sci USA 97:4742–4747

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Zanesi N, Fidanza V, Fong LY, Mancini R, Druck T, Valtieri M, Rüdiger T, McCue PA, Croce CM, Huebner K (2001) The tumor spectrum in FHIT-deficient mice. Proc Natl Acad Sci USA 98:10250–10255

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Huebner K, Croce CM (2001) FRA3B and other common fragile sites: the weakest links. Nat Rev Cancer 1:214–221

    Article  CAS  PubMed  Google Scholar 

  29. Okumura H, Ishii H, Pichiorri F, Croce CM, Mori M, Huebner K (2009) Fragile gene product, Fhit, in oxidative and replicative stress responses. Cancer Sci 100:1145–1150

    Article  CAS  PubMed  Google Scholar 

  30. Pichiorri F, Okumura H, Nakamura T, Garrison PN, Gasparini P, Suh SS, Druck T, McCorkell KA, Barnes LD, Croce CM et al (2009) Correlation of fragile histidine triad (Fhit) protein structural features with effector interactions and biological functions. J Biol Chem 284:1040–1049

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Trapasso F, Pichiorri F, Gaspari M, Palumbo T, Aqeilan RI, Gaudio E, Okumura H, Iuliano R, Di Leva G, Fabbri M et al (2008) Fhit interaction with ferredoxin reductase triggers generation of reactive oxygen species and apoptosis of cancer cells. J Biol Chem 283:13736–13744

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Rimessi A, Marchi S, Fotino C, Romagnoli A, Huebner K, Croce CM, Pinton P, Rizzuto R (2009) Intramitochondrial calcium regulation by the FHIT gene product sensitizes to apoptosis. Proc Natl Acad Sci USA 106:12753–12758

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Jayachandran G, Sazaki J, Nishizaki M, Xu K, Girard L, Minna JD, Roth JA, Ji L (2007) Fragile histidine triad-mediated tumor suppression of lung cancer by targeting multiple components of the Ras/Rho GTPase molecular switch. Cancer Res 67:10379–10388

    Article  CAS  PubMed  Google Scholar 

  34. Joannes A, Bonnomet A, Bindels S, Polette M, Gilles C, Burlet H, Cutrona J, Zahm JM, Birembaut P, Nawrocki-Raby B (2010) Fhit regulates invasion of lung tumor cells. Oncogene 29:1203–1213

    Article  CAS  PubMed  Google Scholar 

  35. Joannes A, Grelet S, Duca L, Gilles C, Kileztky C, Dalstein V, Birembaut P, Polette M, Nawrocki-Raby B (2014) Fhit regulates EMT targets through an EGFR/Src/ERK/Slug signaling axis in human bronchial cells. Mol Cancer Res. doi:10.1158/1541-7786.MCR-13-0386-T

    PubMed  Google Scholar 

  36. Gaudio E, Paduano F, Spizzo R, Ngankeu A, Zanesi N, Gaspari M, Ortuso F, Lovat F, Rock J, Hill GA, Kaou M, Cuda G, Aqeilan RI, Alcaro S, Croce CM, Trapasso F (2013) Fhit delocalizes annexin a4 from plasma membrane to cytosol and sensitizes lung cancer cells to paclitaxel. PLoS ONE 8(11):e78610

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Gardenswartz A, Aqeilan RI (2014) WW domain-containing oxidoreductase’s role in myriad cancers: clinical significance and future implications. Exp Biol Med 239(3):253–263

    Article  Google Scholar 

  38. Le Beau MM, Drabkin H, Glover TW, Gemmill R, Rassool FV, McKeithan TW, Smith DI (1998) An FHIT tumor suppressor gene? Genes Chromosome Cancer 21:281–289

    Article  Google Scholar 

  39. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  40. Negrini S, Gorgoulis VG, Halazonetis TD (2010) Genomic instability–an evolving hallmark of cancer. Nat Rev Mol Cell Biol 11:220–228

    Article  CAS  PubMed  Google Scholar 

  41. Zhu Y, McAvoy S, Kuhn R, Smith DI (2006) RORA, a large common fragile site gene, is involved in cellular stress response. Oncogene 25:2901–2908

    Article  CAS  PubMed  Google Scholar 

  42. Halazonetis TD, Gorgoulis VG, Bartek J (2008) An oncogene-induced DNA damage model for cancer development. Science 319:1352–1355

    Article  CAS  PubMed  Google Scholar 

  43. Aguilera A, Gómez-González B (2008) Genome instability: a mechanistic view of its causes and consequences. Nat Rev Genet 9:204–217

    Article  CAS  PubMed  Google Scholar 

  44. Lowe SW, Cepero E, Evan G (2004) Intrinsic tumour suppression. Nature 432:307–315

    Article  CAS  PubMed  Google Scholar 

  45. Bartkova J, Horejsí Z, Koed K, Krämer A, Tort F, Zieger K, Guldberg P, Sehested M, Nesland JM, Lukas C et al (2005) DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434:864–870

    Article  CAS  PubMed  Google Scholar 

  46. Gorgoulis VG, Vassiliou LV, Karakaidos P, Zacharatos P, Kotsinas A, Liloglou T, Venere M, Ditullio RA, Kastrinakis NG, Levy B et al (2005) Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434:907–913

    Article  CAS  PubMed  Google Scholar 

  47. Austin WR, Armijo AL, Campbell DO, Singh AS, Hsieh T, Nathanson D, Herschman HR, Phelps ME, Witte ON, Czernin J et al (2012) Nucleoside salvage pathway kinases regulate hematopoiesis by linking nucleotide metabolism with replication stress. J Exp Med 209:2215–2228

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Dobrovolsky VN, McGarrity LJ, VonTungeln LS, Mittelstaedt RA, Morris SM, Beland FA, Heflich RH (2005) Micronucleated erythrocyte frequency in control and azidothymidine-treated Tk +/+, Tk ± and Tk−/− mice. Mutat Res 570:227–235

    Article  CAS  PubMed  Google Scholar 

  49. Holmberg C, Fleck O, Hansen HA, Liu C, Slaaby R, Carr AM, Nielsen O (2005) Ddb1 controls genome stability and meiosis in fission yeast. Genes Dev 19:853–862

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Aird KM, Zhang R (2014) Nucleotide metabolism, oncogene-induced senescence and cancer, Cancer Letters (In press)

  51. Aird KM, Zhang G, Li H, Tu Z, Bitler BG, Garipov A, Wu H, Wei Z, Wagner SN, Herlyn M, Zhang R (2013) Suppression of nucleotide metabolism underlies the establishment and maintenance of oncogene-induced senescence. Cell Rep 3(4):1252–1265

    Article  CAS  PubMed  Google Scholar 

  52. Nikolaev SI, Sotiriou SK, Pateras IS, Santoni F, Sougioultzis S, Edgren H, Almusa H, Robyr D, Guipponi M, Saarela J et al (2012) A single-nucleotide substitution mutator phenotype revealed by exome sequencing of human colon adenomas. Cancer Res 72:6279–6289

    Article  CAS  PubMed  Google Scholar 

  53. Loeb LA (2011) Human cancers express mutator phenotypes: origin, consequences and targeting. Nat Rev Cancer 11:450–457

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Loeb LA (2010) Mutator phenotype in cancer: origin and consequences. Semin Cancer Biol 20:279–280

    Article  PubMed Central  PubMed  Google Scholar 

  55. Yates LR, Campbell PJ (2012) Evolution of the cancer genome. Nat Rev Genet 13:795–806

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Bodmer W, Bielas JH, Beckman RA (2008) Genetic instability is not a requirement for tumor development. Cancer Res 68:3558–3560 (discussion 3560–3551)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Bielas JH, Loeb KR, Rubin BP, True LD, Loeb LA (2006) Human cancers express a mutator phenotype. Proc Natl Acad Sci USA 103:18238–18242

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Poli J, Tsaponina O, Crabbé L, Keszthelyi A, Pantesco V, Chabes A, Lengronne A, Pasero P (2012) dNTP pools determine fork progression and origin usage under replication stress. EMBO J 31:883–894

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Davidson MB, Katou Y, Keszthelyi A, Sing TL, Xia T, Ou J, Vaisica JA, Thevakumaran N, Marjavaara L, Myers CL et al (2012) Endogenous DNA replication stress results in expansion of dNTP pools and a mutator phenotype. EMBO J 31:895–907

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Iraqui I, Chekkal Y, Jmari N, Pietrobon V, Fréon K, Costes A, Lambert SA (2012) Recovery of arrested replication forks by homologous recombination is error-prone. PLoS Genet 8:e1002976

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Villarreal DD, Lee K, Deem A, Shim EY, Malkova A, Lee SE (2012) Microhomology directs diverse DNA break repair pathways and chromosomal translocations. PLoS Genet 8:e1003026

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Deem A, Keszthelyi A, Blackgrove T, Vayl A, Coffey B, Mathur R, Chabes A, Malkova A (2011) Break-induced replication is highly inaccurate. PLoS Biol 9:e1000594

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Roberts SA, Sterling J, Thompson C, Harris S, Mav D, Shah R, Klimczak LJ, Kryukov GV, Malc E, Mieczkowski PA et al (2012) Clustered mutations in yeast and in human cancers can arise from damaged long single-strand DNA regions. Mol Cell 46:424–435

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Nik-Zainal S, Alexandrov LB, Wedge DC, Van Loo P, Greenman CD, Raine K, Jones D, Hinton J, Marshall J, Stebbings LA et al (2012) Mutational processes molding the genomes of 21 breast cancers. Cell 149:979–993

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Courtois-Cox S, Jones SL, Cichowski K (2008) Many roads lead to oncogene-induced senescence. Oncogene 27:2801–2809

    Article  CAS  PubMed  Google Scholar 

  66. Nicholson JM, Duesberg P (2009) On the karyotypic origin and evolution of cancer cells. Cancer Genet Cytogenet 194:96–110

    Article  CAS  PubMed  Google Scholar 

  67. Sarkisian CJ, Keister BA, Stairs DB, Boxer RB, Moody SE, Chodosh LA (2007) Dose-dependent oncogene-induced senescence in vivo and its evasion during mammary tumorigenesis. Nat Cell Biol 9:493–505

    Article  CAS  PubMed  Google Scholar 

  68. Jacobs KB, Yeager M, Zhou W, Wacholder S, Wang Z, Rodriguez-Santiago B, Hutchinson A, Deng X, Liu C, Horner MJ et al (2012) Detectable clonal mosaicism and its relationship to aging and cancer. Nat Genet 44:651–658

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Laurie CC, Laurie CA, Rice K, Doheny KF, Zelnick LR, McHugh CP, Ling H, Hetrick KN, Pugh EW, Amos C et al (2012) Detectable clonal mosaicism from birth to old age and its relationship to cancer. Nat Genet 44:642–650

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Young MA, Larson DE, Sun CW, George DR, Ding L, Miller CA, Lin L, Pawlik KM, Chen K, Fan X et al (2012) Background mutations in parental cells account for most of the genetic heterogeneity of induced pluripotent stem cells. Cell Stem Cell 10:570–582

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Torres-Rosell J, De Piccoli G, Cordon-Preciado V, Farmer S, Jarmuz A, Machin F, Pasero P, Lisby M, Haber JE, Aragón L (2007) Anaphase onset before complete DNA replication with intact checkpoint responses. Science 315:1411–1415

    Article  CAS  PubMed  Google Scholar 

  72. Sutherland GR (1979) Heritable fragile sites on human chromosomes I. Factors affecting expression in lymphocyte culture. Am J Hum Genet 31:125–135

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Blount BC, Ames BN (1995) DNA damage in folate deficiency. Baillieres Clin Haematol 8:461–478

    Article  CAS  PubMed  Google Scholar 

  74. MacGregor JT, Schlegel R, Wehr CM, Alperin P, Ames BN (1990) Cytogenetic damage induced by folate deficiency in mice is enhanced by caffeine. Proc Natl Acad Sci USA 87:9962–9965

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Rampersaud GC, Bailey LB, Kauwell GP (2002) Relationship of folate to colorectal and cervical cancer: review and recommendations for practitioners. J Am Diet Assoc 102:1273–1282

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kay Huebner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waters, C.E., Saldivar, J.C., Hosseini, S.A. et al. The FHIT gene product: tumor suppressor and genome “caretaker”. Cell. Mol. Life Sci. 71, 4577–4587 (2014). https://doi.org/10.1007/s00018-014-1722-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1722-0

Keywords

Navigation