Skip to main content

Advertisement

Log in

Small heat-shock proteins: important players in regulating cellular proteostasis

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Small heat-shock proteins (sHsps) are a diverse family of intra-cellular molecular chaperone proteins that play a critical role in mitigating and preventing protein aggregation under stress conditions such as elevated temperature, oxidation and infection. In doing so, they assist in the maintenance of protein homeostasis (proteostasis) thereby avoiding the deleterious effects that result from loss of protein function and/or protein aggregation. The chaperone properties of sHsps are therefore employed extensively in many tissues to prevent the development of diseases associated with protein aggregation. Significant progress has been made of late in understanding the structure and chaperone mechanism of sHsps. In this review, we discuss some of these advances, with a focus on mammalian sHsp hetero-oligomerisation, the mechanism by which sHsps act as molecular chaperones to prevent both amorphous and fibrillar protein aggregation, and the role of post-translational modifications in sHsp chaperone function, particularly in the context of disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Aβ:

Amyloid β

αAc:

αA-crystallin

αBc:

αB-crystallin

αc:

α-Crystallin

ACD:

α-Crystallin domain

AD:

Alzheimer’s disease

ALS:

Amylotrophic lateral sclerosis

α-syn:

α-Synuclein

CJD:

Creutzfeldt–Jakob disease

CMT:

Charcot–Marie–Tooth disease

cryo-EM:

Cryo-electron microscopy

DRM:

Desmin-related myopathy

GAFP:

Glial acidic fibrillary protein

HMN:

Hereditary motor neuropathy

Hsp:

Heat-shock protein

MS:

Multiple sclerosis

PD:

Parkinson’s disease

PrPsc :

Prion protein

SANS:

Small-angle neutron scattering

SAXS:

Small-angle X-ray scattering

sHsp:

Small heat-shock protein

TEM:

Transmission electron microscopy

References

  1. Baldwin AJ, Knowles TP, Tartaglia GG, Fitzpatrick AW, Devlin GL, Shammas SL, Waudby CA, Mossuto MF, Meehan S, Gras SL, Christodoulou J, Anthony-Cahill SJ, Barker PD, Vendruscolo M, Dobson CM (2011) Metastability of native proteins and the phenomenon of amyloid formation. J Am Chem Soc 133(36):14160–14163

    CAS  PubMed  Google Scholar 

  2. Ciryam P, Tartaglia GG, Morimoto RI, Dobson CM, Vendruscolo M (2013) Widespread aggregation and neurodegenerative diseases are associated with supersaturated proteins. Cell Rep 5(3):781–790

    CAS  PubMed  Google Scholar 

  3. Hilton GR, Lioe H, Stengel F, Baldwin AJ, Benesch JLP (2013) Small heat-shock proteins: paramedics of the cell. Top Curr Chem 328:69–98

    CAS  PubMed  Google Scholar 

  4. Laskowska E, Matuszewska E, Kuczynska-Wisnik D (2010) Small heat-shock proteins and protein-misfolding diseases. Curr Pharm Biotechnol 11:146–157

    CAS  PubMed  Google Scholar 

  5. Mymrikov EV, Seit-Nebi AS, Gusev NB (2011) Large potentials of small heat shock proteins. Physiol Rev 91:1123–1159

    CAS  PubMed  Google Scholar 

  6. Carra S, Rusmini P, Crippa V, Giorgetti E, Boncoraglio A, Cristofani R, Naujock M, Meister M, Minoia M, Kampinga HH, Poletti A (2013) Different anti-aggregation and pro-degradative functions of the members of the mammalian sHSP family in neurological disorders. Philos Trans R Soc Lond B Biol Sci 368(1617):20110409

    PubMed Central  PubMed  Google Scholar 

  7. Basha E, O’Neill H, Vierling E (2012) Small heat shock proteins and α-crystallins: dynamic proteins with flexible functions. Trends Biochem Sci 37(3):106–117

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Wyatt AR, Yerbury JJ, Ecroyd H, Wilson MR (2013) Extracellular chaperones and proteostasis. Annu Rev Biochem 82:295–322

    CAS  PubMed  Google Scholar 

  9. Humphreys DT, Carver JA, Easterbrook-Smith SB, Wilson MR (1999) Clusterin has chaperone-like activity similar to that of small heat shock proteins. J Biol Chem 274(11):6875–6881

    CAS  PubMed  Google Scholar 

  10. Poon S, Easterbrook-Smith SB, Rybchyn MS, Carver JA, Wilson MR (2000) Clusterin is an ATP-independent chaperone with very broad substrate specificity that stabilizes stressed proteins in a folding-competent state. Biochemistry 39:15953–15960

    CAS  PubMed  Google Scholar 

  11. Delbecq SP, Klevit RE (2013) One size does not fit all: the oligomeric states of αB-crystallin. FEBS Lett 587(8):1073–1080

    CAS  PubMed  Google Scholar 

  12. Hilton GR, Hochberg GKA, Laganowsky A, McGinningle SI, Baldwin AJ, Benesch JLP (2013) C-terminal interactions mediate the quaternary dynamics of αB-crystallin. Philos Trans R Soc Lond B Biol Sci 368(20110405):1–13

    Google Scholar 

  13. Treweek TM, Ecroyd H, Williams DM, Meehan S, Carver JA (2007) Walker MJ (2007) Site-directed mutations in the C-terminal extension of human αB-crystallin affect chaperone function and block amyloid fibril formation. PLoS ONE e1046(10):1–10

    Google Scholar 

  14. Haley DA, Horwitz J, Stewart PL (1998) The small heat-shock protein, αB-crystallin, has a variable quaternary structure. J Mol Biol 277(1):27–35

    CAS  PubMed  Google Scholar 

  15. Bova MP, Ding L-L, Horwitz J, Fung BK-K (1997) Subunit exchange of αA-crystallin. J Biol Chem 272(47):29511–29517

    CAS  PubMed  Google Scholar 

  16. Carver JA, Aquilina JA, Truscott RJW, Ralston GB (1992) Identification by 1H NMR spectroscopy of flexible C-terminal extensions in bovine lens α-crystallin. FEBS Lett 311(2):143–149

    CAS  PubMed  Google Scholar 

  17. Carver JA, Lindner RA (1998) NMR spectroscopy of α-crystallin. Insights into the structure, interactions and chaperone action of small heat-shock proteins. Int J Biol Macromol 22(3–4):197–209

    CAS  PubMed  Google Scholar 

  18. Carver JA (1999) Probing the structure and interactions of crystallin proteins by NMR spectroscopy. Prog Retin Eye Res 18(4):431–462

    CAS  PubMed  Google Scholar 

  19. Esposito G, Viglino P, Fogolari F, Gaestel M, Carver JA (1998) Selective NMR experiments on macromolecules: implementation and analysis of QUIET-NOESY. J Magn Reson 132(2):204–213

    CAS  PubMed  Google Scholar 

  20. Kim KK, Kim DR, Kim SH (1998) Crystal structure of a small heat-shock protein. Nature 394:595–599

    CAS  PubMed  Google Scholar 

  21. van Montfort RLM, Basha E, Friedrich KL, Slingsby C, Vierling E (2001) Crystal structure and assembly of a eukaryotic small heat shock protein. Nat Struct Biol 8(12):1025–1030

    PubMed  Google Scholar 

  22. Aquilina JA, Benesch JL, Bateman OA, Slingsby C, Robinson CV (2003) Polydispersity of a mammalian chaperone: mass spectrometry reveals the population of oligomers in αB-crystallin. Proc Natl Acad Sci USA 100(19):10611–10616

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Bagnéris C, Bateman OA, Naylor CE, Cronin N, Boelens WC, Keep NH, Slingsby C (2009) Crystal structures of α-crystallin domain dimers of αB-crystallin and Hsp20. J Mol Biol 392(5):1242–1252

    PubMed  Google Scholar 

  24. Baranova EV, Weeks SD, Beelen S, Bukach OV, Gusev NB, Strelkov SV (2011) Three-dimensional structure of α-crystallin domain dimers of human small heat shock proteins HSPB1 and HSPB6. J Mol Biol 411(1):110–122

    CAS  PubMed  Google Scholar 

  25. Laganowsky A, Benesch JLP, Landau M, Ding LL, Sawaya MR, Cascio D, Huang QL, Robinson CV, Horwitz J, Eisenberg D (2010) Crystal structures of truncated alphaA and alphaB crystallins reveal structural mechanisms of polydispersity important for eye lens function. Protein Sci 19(5):1031–1043

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Hochberg GKA, Ecroyd H, Liu C, Cox D, Cascio D, Sawaya MR, Collier MP, Stroud J, Carver JA, Baldwin AJ, Robinson CV, Eisenberg DS, Benesch JLP, Laganowsky A (2014) The structured core domain of αB-crystallin can prevent amyloid fibrillation and associated toxicity. Proc Natl Acad Sci USA 111(16):E1562–E1570

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Jehle S, van Rossum B, Stout JR, Noguchi SM, Falber K, Rehbein K, Oschkinat H, Klevit RE, Rajagopal P (2009) αB-Crystallin: a hybrid solid-state/solution-state NMR investigation reveals structural aspects of the heterogeneous oligomer. J Mol Biol 385(5):1481–1497

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Jehle S, Vollmar BS, Bardiaux B, Dove KK, Rajagopal P, Gonen T, Oschkinat H, Klevit RE (2011) N-terminal domain of αB-crystallin provides a conformational switch for multimerization and structural heterogeneity. Proc Natl Acad Sci USA 108(16):6409–6414

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Hochberg GK, Benesch JL (2014) Dynamical structure of αB-crystallin. Prog Biophys Mol Biol 115(1):11–20

    CAS  PubMed  Google Scholar 

  30. Haley DA, Bova MP, Huang QL, McHaourab HS, Stewart PL (2000) Small heat-shock protein structures reveal a continuum from symmetric to variable assemblies. J Mol Biol 298(2):261–272

    CAS  PubMed  Google Scholar 

  31. Meehan S, Berry Y, Luisi B, Dobson CM, Carver JA, MacPhee CE (2004) Amyloid fibril formation by lens crystallin proteins and its implications for cataract formation. J Biol Chem 279(5):3413–3419

    CAS  PubMed  Google Scholar 

  32. Meehan S, Knowles TP, Baldwin AJ, Smith JF, Squires AM, Clements P, Treweek TM, Ecroyd H, Tartaglia GG, Vendruscolo M, MacPhee CE, Dobson CM, Carver JA (2007) Characterisation of amyloid fibril formation by small heat-shock chaperone proteins human αA-, αB- and R120G αB-crystallins. J Mol Biol 372(2):470–484

    CAS  PubMed  Google Scholar 

  33. Horwitz J, Bova MP, Ding LL, Haley DA, Stewart PL (1999) Lens α-crystallin: function and structure. Eye 13:403–408

    PubMed  Google Scholar 

  34. Peschek J, Braun N, Franzmann TM, Georgalis Y, Haslbeck M, Weinkauf S, Buchner J (2009) The eye lens chaperone α-crystallin forms defined globular assemblies. Proc Natl Acad Sci USA 106(32):13272–13277

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Carver JA, Aquilina JA, Truscott RJW (1994) A possible chaperone-like quaternary structure for α-crystallin. Exp Eye Res 59(2):231–234

    CAS  PubMed  Google Scholar 

  36. Raman B, Rao CM (1994) Chaperone-like activity and quaternary structure of α-crystallin. J Biol Chem 269(44):27264–27268

    CAS  PubMed  Google Scholar 

  37. Ecroyd H, Carver JA (2009) Crystallin proteins and amyloid fibrils. Cell Mol Life Sci 66(1):62–81

    CAS  PubMed  Google Scholar 

  38. Regini JW, Grossmann JG, Burgio MR, Malik NS, Koretz JF, Hodson SA, Elliott GF (2004) Structural changes in α-crystallin and whole eye lens during heating, observed by low-angle X-ray diffraction. J Mol Biol 336(5):1185–1194

    CAS  PubMed  Google Scholar 

  39. Regini JW, Grossmann JG, Timmins P, Harding JJ, Quantock AJ, Hodson SA, Elliott GF (2007) X-ray- and neutron-scattering studies of α-crystallin and evidence that the target protein sits in the fenestrations of the α-crystallin shell. Invest Ophthalmol Vis Sci 48(6):2695–2700

    PubMed  Google Scholar 

  40. Clarke MJ, Artero JB, Moulin M, Callow P, Carver JA, Griffiths PC, Haertlein M, Harding JJ, Meek KM, Timmins P, Regini JW (2010) Investigation of γE-crystallin target protein binding to bovine lens alpha-crystallin by small-angle neutron scattering. Biochim Biophys Acta 1800(3):392–397

    CAS  PubMed  Google Scholar 

  41. Spinozzi F, Mariani P, Rustichelli F, Amenitsch H, Bennardini F, Mura GM, Coi A, Ganadu ML (2006) Temperature dependence of chaperone-like activity and oligomeric state of αB-crystallin. Biochim Biophys Acta 1764(4):677–687

    CAS  PubMed  Google Scholar 

  42. Skouri-Panet F, Quevillon-Cheruel S, Michiel M, Tardieu A, Finet S (2006) sHSPs under temperature and pressure: the opposite behaviour of lens alpha-crystallins and yeast HSP26. Biochim Biophys Acta 1764(3):372–383

    CAS  PubMed  Google Scholar 

  43. Regini JW, Ecroyd H, Meehan S, Bremmell K, Clarke MJ, Lammie D, Wess T, Carver JA (2010) The interaction of unfolding α-lactalbumin and malate dehydrogenase with the molecular chaperone αB-crystallin: a light and X-ray scattering investigation. Mol Vis 16:2446–2456

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Bhat SP, Nagineni CN (1989) αB-subunit of lens specific α-crystallin is present in other ocular and non-ocular tissue. Biochem Biophys Res Commun 158(1):319–325

    CAS  PubMed  Google Scholar 

  45. Horwitz J (1992) Alpha-Crystallin can function as a molecular chaperone. Proc Natl Acad Sci USA 89(21):10449–10453

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Ingolia TD, Craig EA (1982) Four small Drosophila heat shock proteins are related to each other and to mammalian α-crystallin. Proc Natl Acad Sci USA 79(7):2360–2364

    CAS  PubMed Central  PubMed  Google Scholar 

  47. McAvoy JW, Chamberlain CG, de Iongh RU, Hales AM, Lovicu FJ (1999) Lens development. Eye 13:425–437

    PubMed  Google Scholar 

  48. Wistow GJ, Piatigorsky J (1988) Lens crystallins: the evolution and expression of proteins for a highly specialized tissue. Annu Rev Biochem 57:479–504

    CAS  PubMed  Google Scholar 

  49. Bassnett S (2002) Lens organelle degradation. Exp Eye Res 74(1):1–6

    CAS  PubMed  Google Scholar 

  50. Bassnett S (2009) On the mechanism of organelle degradation in the vertebrate lens. Exp Eye Res 88(2):133–139

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Piatigorsky J (1981) Lens differentiation in vertebrates. A review of cellular and molecular features. Differentiation 19(3):134–153

    CAS  PubMed  Google Scholar 

  52. Tardieu A (1998) α-Crystallin quaternary structure and interactive properties control eye lens transparency. Int J Biol Macromol 22(2–3):211–217

    CAS  PubMed  Google Scholar 

  53. Augusteyn RC (2010) On the growth and internal structure of the human lens. Exp Eye Res 90(6):643–654

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Fagerholm PP, Philipson BT, Lindstrom B (1981) Normal human lens—distribution of protein. Exp Eye Res 33(6):615–620

    CAS  PubMed  Google Scholar 

  55. Frederikse PH (2000) Amyloid-like protein structure in mammalian ocular lenses. Curr Eye Res 20(6):462–468

    CAS  PubMed  Google Scholar 

  56. Schachar RA, Solin SA (1975) Microscopic protein structure of lens with a theory for cataract formation as determined by Raman spectroscopy of intact bovine lenses. Invest Ophthalmol 14(5):380–396

    CAS  PubMed  Google Scholar 

  57. Yu NT, East EJ (1975) Laser Raman spectroscopic studies of ocular lens and its isolated protein fractions. J Biol Chem 250(6):2196–2202

    CAS  PubMed  Google Scholar 

  58. Delaye M, Tardieu A (1983) Short-range order of crystallin proteins accounts for eye lens transparency. Nature 302:415–417

    CAS  PubMed  Google Scholar 

  59. Bloemendal H (1977) The vertebrate eye lens. Science 197(4299):127–138

    CAS  PubMed  Google Scholar 

  60. Brady JP, Garland D, Duglas-Tabor Y, Robison WGJ, Groome A, Wawrousek EF (1997) Targeted disruption of the mouse αA-crystallin gene induces cataract and cytoplasmic inclusion bodies containing the small heat shock protein αB-crystallin. Proc Natl Acad Sci USA 94:884–889

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Horwitz J (2000) The function of alpha-crystallin in vision. Semin Cell Dev Biol 11(1):53–60

    CAS  PubMed  Google Scholar 

  62. Hsu CD, Kymes S, Petrash JM (2006) A transgenic mouse model for human autosomal dominant cataract. Invest Ophthalmol Vis Sci 47(5):2036–2044

    PubMed Central  PubMed  Google Scholar 

  63. Sun TX, Liang JJ (1998) Intermolecular exchange and stabilization of recombinant human alphaA- and alphaB-crystallin. J Biol Chem 273(1):286–290

    CAS  PubMed  Google Scholar 

  64. Bhat SP, Horwitz J, Srinivasan A, Ding L (1991) αB-Crystallin exists as an independent protein in the heart and in the lens. Eur J Biochem 202(3):775–781

    CAS  PubMed  Google Scholar 

  65. Nagineni CN, Bhat SP (1989) αB-Crystallin is expressed in kidney epithelial cell lines and not in fibroblasts. FEBS Lett 249(1):89–94

    CAS  PubMed  Google Scholar 

  66. May CA, Arnold B, Welge-Lussen U, Arnold W, Bloemendal H, Lutjen-Drecoll E (1998) αB-crystallin in the mammalian inner ear. ORL J Otorhinolaryngol Relat Spec 60(3):121–125

    CAS  PubMed  Google Scholar 

  67. May CA, Lussen UW, Junemann A, Bloemendal H, Lutjen-Drecoll E (2000) αB-crystallin in lacrimal gland duct and tears. Curr Eye Res 21(1):588–594

    CAS  PubMed  Google Scholar 

  68. Srinivasan AN, Nagineni CN, Bhat SP (1992) αA-Crystallin is expressed in non-ocular tissues. J Biol Chem 267(32):23337–23341

    CAS  PubMed  Google Scholar 

  69. Bhat SP (2003) Crystallins, genes and cataract. Prog Drug Res 60:205–262

    CAS  PubMed  Google Scholar 

  70. Parcellier A, Schmitt E, Brunet M, Hammann A, Solary E, Garrido C (2005) Small heat shock proteins HSP27 and αB-crystallin: cytoprotective and oncogenic functions. Antioxid Redox Signal 7(3–4):404–413

    CAS  PubMed  Google Scholar 

  71. Dasgupta S, Hohman TC, Carper D (1992) Hypertonic stress induces alpha B-crystallin expression. Exp Eye Res 54(3):461–470

    CAS  PubMed  Google Scholar 

  72. Derham BK, Harding JJ (1999) α-Crystallin as a molecular chaperone. Prog Retin Eye Res 18(4):463–509

    CAS  PubMed  Google Scholar 

  73. Klemenz R, Frohl E, Steiger RH, Schafer R, Aoyama A (1991) αB-Crystallin is a small heat shock protein. Proc Natl Acad Sci USA 88(9):3652–3656

    CAS  PubMed Central  PubMed  Google Scholar 

  74. van den Ijssel PR, Overkamp P, Knauf U, Gaestel M, de Jong WW (1994) Alpha A-crystallin confers cellular thermoresistance. FEBS Lett 355(1):54–56

    PubMed  Google Scholar 

  75. Arrigo AP (1998) Small stress proteins: chaperones that act as regulators of intracellular redox state and programmed cell death. Biol Chem 379(1):19–26

    CAS  PubMed  Google Scholar 

  76. Wang KY, Spector A (1995) α-Crystallin can act as a chaperone under conditions of oxidative stress. Invest Ophthalmol Vis Sci 36(2):311–321

    CAS  PubMed  Google Scholar 

  77. Laudanski K, Wyczechowska D (2006) The distinctive role of small heat shock proteins in oncogenesis. Arch Immunol Ther Exp (Warsz) 54(2):103–111

    CAS  Google Scholar 

  78. Ousman SS, Tomooka BH, van Noort JM, Wawrousek EF, O’Connor KC, Hafler DA, Sobel RA, Robinson WH, Steinman L (2007) Protective and therapeutic role for αB-crystallin in autoimmune demyelination. Nature 448(7152):474–479

    CAS  PubMed  Google Scholar 

  79. Zoubeidi A, Gleave M (2012) Small heat shock proteins in cancer therapy and prognosis. Int J Biochem Cell Biol 44(10):1646–1656

    CAS  PubMed  Google Scholar 

  80. Kato K, Shinohara H, Goto S, Inaguma Y, Morishita R, Asano T (1992) Copurification of small heat shock protein with αB-crystallin from human skeletal muscle. J Biol Chem 267(11):7718–7725

    CAS  PubMed  Google Scholar 

  81. Inaguma Y, Goto S, Shinohara H, Hasegawa K, Ohshima K, Kato K (1993) Physiological and pathological changes in levels of the two small stress proteins, HSP27 and αB crystallin, in rat hindlimb muscles. J Biochem (Tokyo) 114(3):378–384

    CAS  Google Scholar 

  82. Sakuma K, Watanabe K, Totsuka T, Kato K (1998) Pathological changes in levels of three small stress proteins, αB-crystallin, HSP 27 and p20, in the hindlimb muscles of dy mouse. Biochim Biophys Acta 1406(2):162–168

    CAS  PubMed  Google Scholar 

  83. Head MW, Corbin E, Goldman JE (1993) Overexpression and abnormal modification of the stress proteins αB-crystallin and HSP27 in Alexander disease. Am J Pathol 143(6):1743–1753

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Arrigo AP, Simon S, Gibert B, Kretz-Remy C, Nivon M, Czekalla A, Guillet D, Moulin M, Diaz-Latoud C, Vicart P (2007) Hsp27 (HspB1) and αB-crystallin (HspB5) as therapeutic targets. FEBS Lett 581(19):3665–3674

    CAS  PubMed  Google Scholar 

  85. Zantema A, Verlaan-De Vries M, Maasdam D, Bol S, van der Eb A (1992) Heat shock protein 27 and αB-crystallin can form a complex, which dissociates by heat shock. J Biol Chem 267(18):12936–12941

    CAS  PubMed  Google Scholar 

  86. Simon S, Dimitrova V, Gibert B, Virot S, Mounier N, Nivon M, Kretz-Remy C, Corset V, Mehlen P, Arrigo AP (2013) Analysis of the dominant effects mediated by wild type or R120G mutant of αB-crystallin (HspB5) towards Hsp27 (HspB1). PLoS ONE 8(8):e70545

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Bova MP, Mchaourab HS, Han Y, Fung BK-K (2000) Subunit exchange of small heat shock proteins. Analysis of oligomer formation of αA-crystallin and Hsp27 by fluorescence resonance energy transfer and site-directed truncations. J Biol Chem 275(2):1035–1042

    CAS  PubMed  Google Scholar 

  88. Bukach OV, Glukhova AE, Seit-Nebi AS, Gusev NB (2009) Heterooligomeric complexes formed by human small heat shock proteins HspB1 (Hsp27) and HspB6 (Hsp20). Biochim Biophys Acta 1794(3):486–495

    CAS  PubMed  Google Scholar 

  89. Aquilina JA, Shrestha S, Morris AM, Ecroyd H (2013) Structural and functional aspects of hetero-oligomers formed by the small heat shock proteins αB-crystallin and HSP27. J Biol Chem 288(19):13602–13609

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Sugiyama Y, Suzuki A, Kishikawa M, Akutsu R, Hirose T, Waye MM, Tsui SK, Yoshida S, Ohno S (2000) Muscle develops a specific form of small heat shock protein complex composed of MKBP/HSPB2 and HSPB3 during mitogenic differentiation. J Biol Chem 275(2):1095–1104

    CAS  PubMed  Google Scholar 

  91. den Engelsman J, Boros S, Dankers PY, Kamps B, Vree Egberts WT, Bode CS, Lane LA, Aquilina JA, Benesch JL, Robinson CV, de Jong WW, Boelens WC (2009) The small heat-shock proteins HSPB2 and HSPB3 form well-defined heterooligomers in a unique 3 to 1 subunit ratio. J Mol Biol 393(5):1022–1032

    Google Scholar 

  92. Kato K, Hasegawa K, Goto S, Inaguma Y (1994) Dissociation as a result of phosphorylation of an aggregated form of the small stress protein, hsp27. J Biol Chem 269(15):11274–11278

    CAS  PubMed  Google Scholar 

  93. Datskevich PN, Mymrikov EV, Gusev NB (2012) Utilization of fluorescent chimeras for investigation of heterooligomeric complexes formed by human small heat shock proteins. Biochimie 94(8):1794–1804

    CAS  PubMed  Google Scholar 

  94. Datskevich PN, Mymrikov EV, Sluchanko NN, Shemetov AA, Sudnitsyna MV, Gusev NB (2012) Expression, purification and some properties of fluorescent chimeras of human small heat shock proteins. Protein Express Purif 82(1):45–54

    CAS  Google Scholar 

  95. Datta SA, Rao CM (2000) Packing-induced conformational and functional changes in the subunits of α-crystallin. J Biol Chem 275(52):41004–41010

    CAS  PubMed  Google Scholar 

  96. Narberhaus F (2002) α-Crystallin-type heat shock proteins: socializing minichaperones in the context of a multichaperone network. Microbiol Mol Biol Rev 66(1):64–93

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Lindner RA, Kapur A, Carver JA (1997) The interaction of the molecular chaperone, α-crystallin, with molten globule states of bovine α-lactalbumin. J Biol Chem 272(44):27722–27729

    CAS  PubMed  Google Scholar 

  98. Hatters DM, Lindner RA, Carver JA, Howlett GJ (2001) The molecular chaperone, α-crystallin, inhibits amyloid formation by Apolipoprotein C-II. J Biol Chem 276(36):33755–33761

    CAS  PubMed  Google Scholar 

  99. Lindner RA, Treweek TM, Carver JA (2001) The molecular chaperone α-crystallin is in kinetic competition with aggregation to stabilize a monomeric molten-globule form of α-lactalbumin. Biochem J 354(1):79–87

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Kulig M, Ecroyd H (2012) The small heat-shock protein αB-crystallin uses different mechanisms of chaperone action to prevent the amorphous versus fibrillar aggregation of α-lactalbumin. Biochem J 448(3):343–352

    CAS  PubMed  Google Scholar 

  101. Giese KC, Basha E, Catague BY, Vierling E (2005) Evidence for an essential function of the N terminus of a small heat shock protein in vivo, independent of in vitro chaperone activity. Proc Natl Acad Sci USA 102(52):18896–18901

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Stromer T, Fischer E, Richter K, Haslbeck M, Buchner J (2004) Analysis of the regulation of the molecular chaperone Hsp26 by temperature-induced dissociation. J Biol Chem 279(12):11222–11228

    CAS  PubMed  Google Scholar 

  103. Aquilina JA, Watt SJ (2007) The N-terminal domain of αB-crystallin is protected from proteolysis by bound substrate. Biochem Biophys Res Commun 353(4):1115–1120

    CAS  PubMed  Google Scholar 

  104. Peschek J, Braun N, Rohrberg J, Back KC, Kriehuber T, Kastenmuller A, Weinkauf S, Buchner J (2013) Regulated structural transitions unleash the chaperone activity of αB-crystallin. Proc Natl Acad Sci USA 110(40):E3780–E3789

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Bhattacharyya J, Padmanabha Udupa EG, Wang J, Sharma KK (2006) Mini-αB-crystallin: a functional element of αB-crystallin with chaperone-like activity. Biochemistry 45(9):3069–3076

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Sharma KK, Kaur H, Kester K (1997) Functional elements in molecular chaperone α-crystallin: identification of binding sites in αB-crystallin. Biochem Biophys Res Commun 239(1):217–222

    CAS  PubMed  Google Scholar 

  107. Jehle S, Rajagopal P, Bardiaux B, Markovic S, Kuehne R, Stout JR, Higman VA, Klevit RE, van Rossum B-J, Oschkinat H (2010) Solid-state NMR and SAXS studies provide a structural basis for the activation of αB-crystallin oligomers. Nat Struct Mol Biol 17(9):1037–1042

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Feil IK, Malfois M, Hendle J, van der Zant H, Svergun DI (2001) A novel quaternary structure of the dimeric α-crystallin domain with chaperone-like activity. J Biol Chem 276(15):12024–12029

    CAS  PubMed  Google Scholar 

  109. Sharma KK, Kumar RS, Kumar GS, Quinn PT (2000) Synthesis and characterization of a peptide identified as a functional element in αA-crystallin. J Biol Chem 275(6):3767–3771

    CAS  PubMed  Google Scholar 

  110. Shi J, Koteiche HA, McDonald ET, Fox TL, Stewart PL, McHaourab HS (2013) Cryoelectron microscopy analysis of small heat shock protein 16.5 (Hsp16.5) complexes with T4 lysozyme reveals the structural basis of multimode binding. J Biol Chem 288(7):4819–4830

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Koteiche HA, Mchaourab HS (2003) Mechanism of chaperone function in small heat-shock proteins: phosphorylation-induced activation of two-mode binding in αB-crystallin. J Biol Chem 278(12):10361–10367

    CAS  PubMed  Google Scholar 

  112. Shinohara H, Inaguma Y, Goto S, Inagaki T, Kato K (1993) AlphaB-crystallin and HSP28 are enhanced in the cerebral cortex of patients with Alzheimer’s disease. J Neurol Sci 119(2):203–208

    CAS  PubMed  Google Scholar 

  113. Renkawek K, Voorter CE, Bosman GJ, van Workum FP, de Jong WW (1994) Expression of alpha B-crystallin in Alzheimer’s disease. Acta Neuropathol (Berl) 87(2):155–160

    CAS  Google Scholar 

  114. Rekas A, Jankova L, Thorn DC, Cappai R, Carver JA (2007) Monitoring the prevention of amyloid fibril formation by α-crystallin. FEBS J 274(24):6290–6304

    CAS  PubMed  Google Scholar 

  115. Waudby CA, Knowles TPJ, Devlin GL, Skepper JN, Ecroyd H, Carver JA, Welland ME, Christodoulou J, Dobson CM, Meehan S (2010) The interaction of αB-crystallin with mature α-synuclein amyloid fibrils inhibits their elongation. Biophys J 98(5):843–851

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Shammas SL, Waudby CA, Wang S, Buell AK, Knowles TP, Ecroyd H, Welland ME, Carver JA, Dobson CM, Meehan S (2011) Binding of the molecular chaperone αB-crystallin to Aβ amyloid fibrils inhibits fibril elongation. Biophys J 101(7):1681–1689

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Binger KJ, Ecroyd H, Yang S, Carver JA, Howlett GJ, Griffin MD (2013) Avoiding the oligomeric state: αB-crystallin inhibits fragmentation and induces dissociation of apolipoprotein C-II amyloid fibrils. FASEB J 27(3):1214–1222

    CAS  PubMed  Google Scholar 

  118. Knowles TP, Waudby CA, Devlin GL, Cohen SI, Aguzzi A, Vendruscolo M, Terentjev EM, Welland ME, Dobson CM (2009) An analytical solution to the kinetics of breakable filament assembly. Science 326(5959):1533–1537

    CAS  PubMed  Google Scholar 

  119. Esposito G, Garvey M, Alverdi V, Pettirossi F, Corazza A, Fogolari F, Polano M, Mangione PP, Giorgetti S, Stoppini M, Rekas A, Bellotti V, Heck AJ, Carver JA (2013) Monitoring the interaction between β2-microglobulin and the molecular chaperone αB-crystallin by NMR and mass spectrometry: αB-crystallin dissociates β2-microglobulin oligomers. J Biol Chem 288(24):17844–17858

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Sharma KK, Ortwerth BJ (1995) Effect of cross-linking on the chaperone-like function of alpha crystallin. Exp Eye Res 61(4):413–421

    CAS  PubMed  Google Scholar 

  121. Augusteyn RC (2004) Dissociation is not required for α-crystallin’s chaperone function. Exp Eye Res 79(6):781–784

    CAS  PubMed  Google Scholar 

  122. Aquilina JA, Benesch JL, Ding LL, Yaron O, Horwitz J, Robinson CV (2005) Subunit exchange of polydisperse proteins: mass spectrometry reveals consequences of αA-crystallin truncation. J Biol Chem 280(15):14485–14491

    CAS  PubMed  Google Scholar 

  123. Ito H, Iida K, Kamei K, Iwamoto I, Inaguma Y, Kato K (1999) αB-crystallin in the rat lens is phosphorylated at an early post-natal age. FEBS Lett 446(2–3):269–272

    CAS  PubMed  Google Scholar 

  124. Kilby GW, Carver JA, Zhu JL, Sheil MM, Truscott RJ (1995) Loss of the C-terminal serine residue from bovine βB2-crystallin. Exp Eye Res 60(5):465–469

    CAS  PubMed  Google Scholar 

  125. Carver JA, Nicholls KA, Aquilina JA, Truscott RJ (1996) Age-related changes in bovine α-crystallin and high-molecular-weight protein. Exp Eye Res 63(6):639–647

    CAS  PubMed  Google Scholar 

  126. Truscott RJW, Zhu X (2010) Presbyopia and cataract: a question of heat and time. Prog Retin Eye Res 29(6):487–499

    PubMed  Google Scholar 

  127. Hayes VH, Devlin G, Quinlan RA (2008) Truncation of αB-crystallin by the myopathy-causing Q151X mutation significantly destabilizes the protein leading to aggregate formation in transfected cells. J Biol Chem 283(16):10500–10512

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Hains PG, Truscott RJW (2010) Age-dependent deamidation of lifelong proteins in the human lens. Invest Ophthalmol Vis Sci 51(6):3107–3114

    PubMed Central  PubMed  Google Scholar 

  129. Lampi KJ, Wilmarth PA, Murray MR, David LL (2014) Lens β-crystallins: the role of deamidation and related modifications in aging and cataract. Prog Biophys Mol Biol 115:21–31

    CAS  PubMed  Google Scholar 

  130. Wilmarth PA, Tanner S, Dasari S, Nagalla SR, Riviere MA, Bafna V, Pevzner PA, David LL (2006) Age-related changes in human crystallins determined from comparative analysis of post-translational modifications in young and aged lens: does deamidation contribute to crystallin insolubility? J Proteome Res 5(10):2554–2566

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Stevens VJ, Rouzer CA, Monnier V, Cerami A (1978) Diabetic cataract formation: potential role of glycosylation of lens crystallins (nonenzymatic glycosylation/sulfhydryl oxidation). Proc Natl Acad Sci USA 75(6):2918–2922

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Blakytny R, Carver JA, Harding JJ, Kilby GW, Sheil MM (1997) A spectroscopic study of glycated bovine α-crystallin: investigation of flexibility of the C-terminal extension, chaperone activity and evidence for diglycation. Biochim Biophys Acta 1343(2):299–315

    CAS  PubMed  Google Scholar 

  133. Arrigo AP, Welch WJ (1987) Characterization and purification of the small 28,000-dalton mammalian heat shock protein. J Biol Chem 262(32):15359–15369

    CAS  PubMed  Google Scholar 

  134. Landry J, Chretien P, Laszlo A, Lambert H (1991) Phosphorylation of HSP27 during development and decay of thermotolerance in Chinese hamster cells. J Cell Physiol 147(1):93–101

    CAS  PubMed  Google Scholar 

  135. Kato K, Goto S, Inaguma Y, Hasegawa K, Morishita R, Asano T (1994) Purification and characterization of a 20-kDa protein that is highly homologous to αB crystallin. J Biol Chem 269(21):15302–15309

    CAS  PubMed  Google Scholar 

  136. Ito H, Okamoto K, Nakayama H, Isobe T, Kato K (1997) Phosphorylation of αB-crystallin in response to various types of stress. J Biol Chem 272(47):29934–29941

    CAS  PubMed  Google Scholar 

  137. van den Ijssel PR, Overkamp P, Bloemendal H, de Jong WW (1998) Phosphorylation of αB-crystallin and HSP27 is induced by similar stressors in HeLa cells. Biochem Biophys Res Commun 247(2):518–523

    PubMed  Google Scholar 

  138. Voorter CE, de Haard-Hoekman WA, Roersma ES, Meyer HE, Bloemendal H, de Jong WW (1989) The in vivo phosphorylation sites of bovine alpha B-crystallin. FEBS Lett 259(1):50–52

    CAS  PubMed  Google Scholar 

  139. Smith JB, Sun Y, Smith DL, Green B (1992) Identification of the posttranslational modifications of bovine lens αB-crystallins by mass spectrometry. Protein Sci 1(5):601–608

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Kato K, Ito H, Kamei K, Inaguma Y, Iwamoto I, Saga S (1998) Phosphorylation of αB-crystallin in mitotic cells and identification of enzymatic activities responsible for phosphorylation. J Biol Chem 273(43):28346–28354

    CAS  PubMed  Google Scholar 

  141. Gaestel M, Schroeder W, Benndorf R, Lippman C, Buchner K, Hucho F, Erdmann VA, Bielka H (1991) Identification of the phosphorylation sites of the murine small heat shock protein hsp25. J Biol Chem 266(22):14721–14724

    CAS  PubMed  Google Scholar 

  142. Landry J, Lambert H, Zhou M, Lavoie JN, Hickey E, Weber LA, Anderson CW (1992) Human HSP27 is phosphorylated at serines 78 and 82 by heat shock and mitogen-activated kinases that recognize the same amino acid motif as S6 kinase II. J Biol Chem 267(2):794–803

    CAS  PubMed  Google Scholar 

  143. Stokoe D, Engel K, Campbell DG, Cohen P, Gaestel M (1992) Identification of MAPKAP kinase 2 as a major enzyme responsible for the phosphorylation of the small mammalian heat shock proteins. FEBS Lett 313(3):307–313

    CAS  PubMed  Google Scholar 

  144. Rouse J, Cohen P, Trigon S, Morange M, Alonso-Llamazares A, Zamanillo D, Hunt T, Nebreda AR (1994) A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins. Cell 78(6):1027–1037

    CAS  PubMed  Google Scholar 

  145. Edwards HV, Scott JD, Baillie GS (2012) PKA phosphorylation of the small heat-shock protein Hsp20 enhances its cardioprotective effects. Biochem Soc Trans 40(1):210–214

    CAS  PubMed Central  PubMed  Google Scholar 

  146. Fan GC, Chu GX, Mitton B, Song QJ, Yuan QY, Kranias EG (2004) Small heat-shock protein Hsp20 phosphorylation inhibits β-agonist-induced cardiac apoptosis. Circ Res 94:1474–1482

    CAS  PubMed  Google Scholar 

  147. Beall A, Bagwell D, Woodrum D, Stoming TA, Kato K, Suzuki A, Rasmussen H, Brophy CM (1999) The small heat shock-related protein, HSP20, is phosphorylated on serine 16 during cyclic nucleotide-dependent relaxation. J Biol Chem 274(16):11344–11351

    CAS  PubMed  Google Scholar 

  148. Shemetov AA, Seit-Nebi AS, Bukach OV, Gusev NB (2008) Phosphorylation by cyclic AMP-dependent protein kinase inhibits chaperone-like activity of human HSP22 in vitro. Biochemistry (Mosc) 73(2):200–208

    CAS  Google Scholar 

  149. Rosales JL, Sarker K, Ho N, Broniewska M, Wong P, Cheng M, van der Hoorn FA, Lee KY (2007) ODF1 phosphorylation by Cdk5/p35 enhances ODF1-OIP1 interaction. Cell Physiol Biochem 20(5):311–318

    CAS  PubMed  Google Scholar 

  150. Aquilina JA, Benesch JL, Ding L, Yaron O, Horwitz J, Robinson CV (2004) Phosphorylation of αB-crystallin alters chaperone function through loss of dimeric substructure. J Biol Chem 279(27):28675–28680

    CAS  PubMed  Google Scholar 

  151. Ecroyd H, Meehan SM, Horwitz J, Aquilina JA, Benesch JLP, Robinson CV, MacPhee CE, Carver JA (2007) Mimicking phosphorylation of αB-crystallin affects its chaperone activity. Biochem J 401(1):129–141

    CAS  PubMed Central  PubMed  Google Scholar 

  152. Ahmad MF, Raman B, Ramakrishna T, Rao ChM (2008) Effect of phosphorylation on αB-crystallin: differences in stability, subunit exchange and chaperone activity of homo and mixed oligomers of αB-crystallin and its phosphorylation-mimicking mutant. J Mol Biol 375(4):1040–1051

    CAS  PubMed  Google Scholar 

  153. Rogalla T, Ehrnsperger M, Preville X, Kotlyarov A, Lutsch G, Ducasse C, Paul C, Wieske M, Arrigo AP, Buchner J, Gaestel M (1999) Regulation of Hsp27 oligomerization, chaperone function, and protective activity against oxidative stress/tumor necrosis factor α by phosphorylation. J Biol Chem 274(27):18947–18956

    CAS  PubMed  Google Scholar 

  154. Hayes D, Napoli V, Mazurkie A, Stafford WF, Graceffa P (2009) Phosphorylation dependence of hsp27 multimeric size and molecular chaperone function. J Biol Chem 284(28):18801–18807

    CAS  PubMed Central  PubMed  Google Scholar 

  155. Lambert H, Charette SJ, Bernier AF, Guimond A, Landry J (1999) HSP27 multimerization mediated by phosphorylation-sensitive intermolecular interactions at the amino terminus. J Biol Chem 274(14):9378–9385

    CAS  PubMed  Google Scholar 

  156. Shashidharamurthy R, Koteiche HA, Dong J, McHaourab HS (2005) Mechanism of chaperone function in small heat shock proteins: dissociation of the HSP27 oligomer is required for recognition and binding of destabilized T4 lysozyme. J Biol Chem 280(7):5281–5289

    CAS  PubMed  Google Scholar 

  157. Theriault JR, Lambert H, Chavez-Zobel AT, Charest G, Lavigne P, Landry J (2004) Essential role of the NH2-terminal WD/EPF motif in the phosphorylation-activated protective function of mammalian Hsp27. J Biol Chem 279(22):23463–23471

    CAS  PubMed  Google Scholar 

  158. Voorter CE, Wintjes L, Bloemendal H, de Jong WW (1992) Relocalization of αB-crystallin by heat shock in ovarian carcinoma cells. FEBS Lett 309(2):111–114

    CAS  PubMed  Google Scholar 

  159. van den Ijssel P, Wheelock R, Prescott A, Russell P, Quinlan RA (2003) Nuclear speckle localisation of the small heat shock protein αB-crystallin and its inhibition by the R120G cardiomyopathy-linked mutation. Exp Cell Res 287(2):249–261

    PubMed  Google Scholar 

  160. Adhikari AS, Sridhar Rao K, Rangaraj N, Parnaik VK, Mohan Rao C (2004) Heat stress-induced localization of small heat shock proteins in mouse myoblasts: intranuclear lamin A/C speckles as target for αB-crystallin and Hsp25. Exp Cell Res 299(2):393–403

    CAS  PubMed  Google Scholar 

  161. den Engelsman J, Gerrits D, de Jong WW, Robbins J, Kato K, Boelens WC (2005) Nuclear import of αB-crystallin is phosphorylation-dependent and hampered by hyperphosphorylation of the myopathy-related mutant R120G. J Biol Chem 280(44):37139–37148

    Google Scholar 

  162. Bryantsev AL, Chechenova MB, Shelden EA (2007) Recruitment of phosphorylated small heat shock protein Hsp27 to nuclear speckles without stress. Exp Cell Res 313(1):195–209

    CAS  PubMed Central  PubMed  Google Scholar 

  163. Kamei K, Hamaguchi T, Matsuura N, Iwase H, Masuda K (2000) Post-translational modification of alphaB-crystallin of normal human lenses. Biol Pharm Bull 23(2):226–230

    CAS  PubMed  Google Scholar 

  164. van Noort JM, van Veelen P, Hopstaken F (1998) Purification of the stress protein αB-crystallin and its differentially phosphorylated forms. J Immunol Methods 221(1–2):159–168

    PubMed  Google Scholar 

  165. Kamei A, Hamaguchi T, Matsuura N, Masuda K (2001) Does post-translational modification influence chaperone-like activity of alpha-crystallin? I. Study on phosphorylation. Biol Pharm Bull 24(1):96–99

    CAS  PubMed  Google Scholar 

  166. Benesch JL, Ayoub M, Robinson CV, Aquilina JA (2008) Small heat shock protein activity is regulated by variable oligomeric substructure. J Biol Chem 283(42):28513–28517

    CAS  PubMed Central  PubMed  Google Scholar 

  167. Ito H, Kamei K, Iwamoto I, Inaguma Y, Nohara D, Kato K (2001) Phosphorylation-induced change of the oligomerization state of αB-crystallin. J Biol Chem 276(7):5346–5352

    CAS  PubMed  Google Scholar 

  168. den Engelsman J, Bennink EJ, Doerwald L, Onnekink C, Wunderink L, Andley UP, Kato K, de Jong WW, Boelens WC (2004) Mimicking phosphorylation of the small heat-shock protein αB-crystallin recruits the F-box protein FBX4 to nuclear SC35 speckles. Eur J Biochem 271(21):4195–4203

    Google Scholar 

  169. Launay N, Tarze A, Vicart P, Lilienbaum A (2010) Serine 59 phosphorylation of αB-crystallin down-regulates its anti-apoptotic function by binding and sequestering Bcl-2 in breast cancer cells. J Biol Chem 285(48):37324–37332

    CAS  PubMed Central  PubMed  Google Scholar 

  170. Knauf U, Jakob U, Engel K, Buchner J, Gaestel M (1994) Stress- and mitogen-induced phosphorylation of the small heat shock protein Hsp25 by MAPKAP kinase 2 is not essential for chaperone properties and cellular thermoresistance. EMBO J 13(1):54–60

    CAS  PubMed Central  PubMed  Google Scholar 

  171. Braun N, Zacharias M, Peschek J, Kastenmüller A, Zou J, Hanzlik M, Haslbeck M, Rappsilber J, Buchner J, Weinkauf S (2011) Multiple molecular architectures of the eye lens chaperone αB-crystallin elucidated by a triple hybrid approach. Proc Natl Acad Sci USA 108(51):20491–20496

    CAS  PubMed Central  PubMed  Google Scholar 

  172. Clark JI, Muchowski PJ (2000) Small heat shock proteins and their potential role in human disease. Curr Opin Struct Biol 10:52–59

    CAS  PubMed  Google Scholar 

  173. Thomas PJ, Qu B-H, Pedersen PL (1995) Defective protein folding as a basis of human disease. Trends Biochem Sci 20:456–459

    CAS  PubMed  Google Scholar 

  174. Sun Y, MacRae TH (2005) The small heat shock proteins and their role in human disease. FEBS J 272(11):2613–2627

    CAS  PubMed  Google Scholar 

  175. Arrigo AP (2005) In search of the molecular mechanism by which small stress proteins counteract apoptosis during cellular differentiation. J Cell Biochem 94(2):241–246

    CAS  PubMed  Google Scholar 

  176. Mehlen P, Mehlen A, Godet J, Arrigo AP (1997) Hsp27 as a switch between differentiation and apoptosis in murine embryonic stem cells. J Biol Chem 272(50):31657–31665

    CAS  PubMed  Google Scholar 

  177. Gusev NB, Bogatcheva NV, Marston SB (2002) Structure and properties of small heat shock proteins (sHsp) and their interaction with cytoskeleton proteins. Biochemistry (Mosc) 67(5):511–519

    CAS  Google Scholar 

  178. Mounier N, Arrigo AP (2002) Actin cytoskeleton and small heat shock proteins: how do they interact? Cell Stress Chaperones 7(2):167–176

    CAS  PubMed Central  PubMed  Google Scholar 

  179. Parcellier A, Gurbuxani S, Schmitt E, Solary E, Garrido C (2003) Heat shock proteins, cellular chaperones that modulate mitochondrial cell death pathways. Biochem Biophys Res Commun 304(3):505–512

    CAS  PubMed  Google Scholar 

  180. Rekas A, Adda CG, Aquilina JA, Barnham KJ, Sunde M, Galatis D, Williamson NA, Masters CL, Anders RF, Robinson CV, Cappai R, Carver JA (2004) Interaction of the molecular chaperone αB-crystallin with α-synuclein: effects on amyloid fibril formation and chaperone activity. J Mol Biol 340(5):1167–1183

    CAS  PubMed  Google Scholar 

  181. Quinlan RA, Brenner M, Goldman JE, Messing A (2007) GFAP and its role in Alexander disease. Exp Cell Res 313(10):2077–2087

    CAS  PubMed Central  PubMed  Google Scholar 

  182. Anagnostou G, Akbar MT, Paul P, Angelinetta C, Steiner TJ, de Belleroche J (2010) Vesicle associated membrane protein B (VAPB) is decreased in ALS spinal cord. Neurobiol Aging 31(6):969–985

    CAS  PubMed  Google Scholar 

  183. Wilhelmus MM, Otte-Holler I, Wesseling P, de Waal RM, Boelens WC, Verbeek MM (2006) Specific association of small heat shock proteins with the pathological hallmarks of Alzheimer’s disease brains. Neuropathol Appl Neurobiol 32(2):119–130

    CAS  PubMed  Google Scholar 

  184. Crippa V, Sau D, Rusmini P, Boncoraglio A, Onesto E, Bolzoni E, Galbiati M, Fontana E, Marino M, Carra S, Bendotti C, De Biasi S, Poletti A (2010) The small heat shock protein B8 (HspB8) promotes autophagic removal of misfolded proteins involved in amyotrophic lateral sclerosis (ALS). Hum Mol Genet 19(17):3440–3456

    CAS  PubMed  Google Scholar 

  185. Seidel K, Vinet J, den Dunnen WFA, Brunt ER, Meister M, Boncoraglio A, Zijlstra MP, Boddeke HWGM, Rüb U, Kampinga HH, Carra S (2012) The HSPB8-BAG3 chaperone complex is upregulated in astrocytes in the human brain affected by protein aggregation diseases. Neuropathol Appl Neurobiol 38:39–53

    CAS  PubMed  Google Scholar 

  186. Goldman JE, Corbin E (1991) Rosenthal fibres contain ubiquitinated αB-crystallin. Am J Pathol 139(4):933–938

    CAS  PubMed Central  PubMed  Google Scholar 

  187. Tomokane N, Iwaki T, Tateishi J, Iwaki A, Goldman JE (1991) Rosenthal fibers share epitopes with αB-crystallin, glial fibrillary acidic protein, and ubiquitin, but not with vimentin. Immunoelectron microscopy with colloidal gold. Am J Pathol 138(4):875–885

    CAS  PubMed Central  PubMed  Google Scholar 

  188. Weissenbock H, Obermaier G, Dahme E (1996) Alexander’s disease in a Bernese mountain dog. Acta Neuropathol (Berl) 91(2):200–204

    CAS  Google Scholar 

  189. de Jong WW, Leunissen JA, Voorter CE (1993) Evolution of the alpha-crystallin/small heat-shock protein family. Mol Biol Evol 10(1):103–126

    PubMed  Google Scholar 

  190. Hershko A, Eytan E, Ciechanover A, Haas AL (1982) Immunochemical analysis of the turnover of ubiquitin-protein conjugates in intact cells. Relationship to the breakdown of abnormal proteins. J Biol Chem 257(23):13964–13970

    CAS  PubMed  Google Scholar 

  191. Kato S, Hirano A, Umahara T, Llena JF, Herz F, Ohama E (1992) Ultrastructural and immunohistochemical studies on ballooned cortical neurons in Creutzfeldt–Jakob disease: expression of alpha B-crystallin, ubiquitin and stress–response protein 27. Acta Neuropathol (Berl) 84(4):443–448

    CAS  Google Scholar 

  192. van Rijk AF, Bloemendal H (2000) AlphaB-crystallin in neuropathology. Ophthalmologica 214:7–12

    PubMed  Google Scholar 

  193. Selkoe DJ (1994) Cell biology of the amyloid β-protein precursor and the mechanism of Alzheimer’s disease. Annu Rev Cell Biol 10:373–403

    CAS  PubMed  Google Scholar 

  194. Jarrett JT, Berger EP, Lansbury PTJ (1993) The C-terminus of the β protein is critical in amyloidogenesis. Ann N Y Acad Sci 695:144–148

    CAS  PubMed  Google Scholar 

  195. Johnston JA, Cowburn RF, Norgren S, Wiehager B, Venizelos N, Winblad B, Vigo-Pelfrey C, Schenk D, Lannfelt L, O’Neil LC (1994) Increased β-amyloid release and levels of amyloid precursor protein (APP) in fibroblast cell lines from family members with the Swedish Alzheimer’s disease APP670/671 mutation. FEBS Lett 354(3):274–278

    CAS  PubMed  Google Scholar 

  196. Lansbury PTJ (1995) Consequences of the molecular mechanism of amyloid formation for the understanding of the pathogenesis of Alzheimer’s disease and the development of therapeutic strategies. Arzneimittelforschung 45(3A):432–434

    CAS  PubMed  Google Scholar 

  197. Scheuner D, Eckman C, Jensen M, Song X, Citron M, Suzuki N, Bird TD, Hardy J, Hutton M, Kukull W, Larson E, Levy-Lahad E, Viitanen M, Peskind E, Poorkaj P, Schellenberg G, Tanzi R, Wasco W, Lannfelt L, Selkoe DJ, Younkin S (1996) Secreted amyloid β-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat Med 2(8):864–870

    CAS  PubMed  Google Scholar 

  198. Iwaki T, Wisniewski T, Iwaki A, Corbin E, Tomokane N, Tateishi J, Goldman JE (1992) Accumulation of αB-crystallin in central nervous system glia and neurons in pathologic conditions. Am J Pathol 140(2):345–356

    CAS  PubMed Central  PubMed  Google Scholar 

  199. Dehle FC, Ecroyd H, Musgrave IF, Carver JA (2010) αB-Crystallin inhibits the cell toxicity associated with amyloid fibril formation by κ-casein and the amyloid-β peptide. Cell Stress Chaperones 15(6):1013–1026

    CAS  PubMed Central  PubMed  Google Scholar 

  200. Fändrich M, Schmidt M, Grigorieff N (2011) Recent progress in understanding Alzheimer’s β-amyloid structures. Trends Biochem Sci 36(6):338–345

    PubMed Central  PubMed  Google Scholar 

  201. Noble W, Hanger DP, Miller CC, Lovestone S (2013) The importance of tau phosphorylation for neurodegenerative diseases. Front Neurol 4:83

    PubMed Central  PubMed  Google Scholar 

  202. Dabir DV, Trojanowski JQ, Richter-Landsberg C, Lee VM-Y, Forman MS (2004) Expression of the small heat-shock protein αB-crystallin in tauopathies with glial pathology. Am J Pathol 164(1):155–166

    CAS  PubMed Central  PubMed  Google Scholar 

  203. Sun G, Guo M, Shen A, Mei F, Peng X, Gong R, Guo D, Wu J, Tien P, Xiao G (2005) Bovine PrPC directly interacts with αB-crystalline. FEBS Lett 579(24):5419–5424

    CAS  PubMed  Google Scholar 

  204. Tamaoka A, Mizusawa H, Mori H, Shoji S (1995) Ubiquitinated αB-crystallin in glial cytoplasmic inclusions from the brain of a patient with multiple system atrophy. J Neurol Sci 129(2):192–198

    CAS  PubMed  Google Scholar 

  205. Yerbury JJ, Gower D, Vanags L, Roberts K, Lee JA, Ecroyd H (2013) The small heat shock proteins αB-crystallin and Hsp27 suppress SOD1 aggregation in vitro. Cell Stress Chaperones 18(2):251–257

    CAS  PubMed Central  PubMed  Google Scholar 

  206. Karch CM, Borchelt DR (2010) An examination of αB-crystallin as a modifier of SOD1 aggregate pathology and toxicity in models of familial amyotrophic lateral sclerosis. J Neurochem 113(5):1092–1100

    CAS  PubMed Central  PubMed  Google Scholar 

  207. Cox D, Carver JA (1842) Ecroyd H (2014) Preventing α-synuclein aggregation: the role of the small heat-shock molecular chaperone proteins. Biochim Biophys Acta 9:1830–1843

    Google Scholar 

  208. Mizutani T, Inose T, Nakajima S, Kakimi S, Uchigata M, Ikeda K, Gambetti P, Takasu T (1998) Familial Parkinsonism and dementia with ballooned neurons, argyrophilic neuronal inclusions, atypical neurofibrillary tangles, tau-negative astrocytic fibrillary tangles, and Lewy bodies. Acta Neuropathol (Berl) 95(1):15–27

    CAS  Google Scholar 

  209. Vos MJ, Zijlstra MP, Kanon B, van Waarde-Verhagen MA, Brunt ER, Oosterveld-Hut HM, Carra S, Sibon OC, Kampinga HH (2010) HSPB7 is the most potent polyQ aggregation suppressor within the HSPB family of molecular chaperones. Hum Mol Genet 19(23):4677–4693

    CAS  PubMed  Google Scholar 

  210. Robertson AL, Headey SJ, Saunders HM, Ecroyd H, Scanlon MJ, Carver JA, Bottomley SP (2010) Small heat-shock proteins interact with a flanking domain to suppress polyglutamine aggregation. Proc Natl Acad Sci U S A 107(23):10424–10429

    CAS  PubMed Central  PubMed  Google Scholar 

  211. Han MH, Hwang SI, Roy DB, Lundgren DH, Price JV, Ousman SS, Fernald GH, Gerlitz B, Robinson WH, Baranzini SE, Grinnell BW, Raine CS, Sobel RA, Han DK, Steinman L (2008) Proteomic analysis of active multiple sclerosis lesions reveals therapeutic targets. Nature 451(7182):1076–1081

    CAS  PubMed  Google Scholar 

  212. Chabas D, Baranzini SE, Mitchell D, Bernard CC, Rittling SR, Denhardt DT, Sobel RA, Lock C, Karpuj M, Pedotti R, Heller R, Oksenberg JR, Steinman L (2001) The influence of the proinflammatory cytokine, osteopontin, on autoimmune demyelinating disease. Science 294(5547):1731–1735

    CAS  PubMed  Google Scholar 

  213. van Noort JM, van Sechel AC, van Stipdonk MJB, Bajramovic J (1997) The small heat shock protein αB-crystallin as a key autoantigen in multiple sclerosis. In: van Leeuwen FW, Salehi A, Giger RJ, Holtmaat AJGD, Verhaagen J (eds) 20th International Summer School of Brain Research. Royal Netherlands Academy of Sciences. Elsevier, Amsterdam, pp 435–452

    Google Scholar 

  214. Rothbard JB, Zhao X, Sharpe O, Strohman MJ, Kurnellas M, Mellins ED, Robinson WH, Steinman L (2011) Chaperone activity of αB-crystallin is responsible for its incorrect assignment as an autoantigen in multiple sclerosis. J Immunol 186(7):4263–4268

    CAS  PubMed Central  PubMed  Google Scholar 

  215. Chen P, Ji W, Liu FY, Tang HZ, Fu S, Zhang X, Liu M, Gong L, Deng M, Hu WF, Hu XH, Chen XW, Li ZL, Li X, Liu J, Li DW (2012) Alpha-crystallins and tumorigenesis. Curr Mol Med 12(9):1164–1173

    CAS  PubMed  Google Scholar 

  216. Xu L, Chen S, Bergan RC (2006) MAPKAPK2 and HSP27 are downstream effectors of p38 MAP kinase-mediated matrix metalloproteinase type 2 activation and cell invasion in human prostate cancer. Oncogene 25(21):2987–2998

    CAS  PubMed  Google Scholar 

  217. Moyano JV, Evans JR, Chen F, Lu M, Werner ME, Yehiely F, Diaz LK, Turbin D, Karaca G, Wiley E, Nielsen TO, Perou CM, Cryns VL (2006) AlphaB-crystallin is a novel oncoprotein that predicts poor clinical outcome in breast cancer. J Clin Invest 116(1):261–270

    CAS  PubMed Central  PubMed  Google Scholar 

  218. Oesterreich S, Weng CN, Qiu M, Hilsenbeck SG, Osborne CK, Fuqua SA (1993) The small heat shock protein hsp27 is correlated with growth and drug resistance in human breast cancer cell lines. Cancer Res 53(19):4443–4448

    CAS  PubMed  Google Scholar 

  219. Webster KA (2003) Serine phosphorylation and suppression of apoptosis by the small heat-shock protein alphaB-crystallin. Circ Res 92(2):130–132

    CAS  PubMed  Google Scholar 

  220. Mao Y-W, Liu J-P, Xiang H, Li D-C (2004) Human alphaA- and alphaB-crystallins bind to Bax and Bcl-XS to sequester their translocation during staurosporine-induced apoptosis. Cell Death Differ 11(5):512–526

    CAS  PubMed  Google Scholar 

  221. Charette SJ, Lavoie JN, Lambert H, Landry J (2000) Inhibition of Daxx-mediated apoptosis by Heat Shock Protein 27. Mol Cell Biol 20(20):7602–7612

    CAS  PubMed Central  PubMed  Google Scholar 

  222. Mehlen P, Schulze-Osthoff K, Arrigo AP (1996) Small stress proteins as novel regulators of apoptosis. Heat shock protein 27 blocks Fas/APO-1 and staurosporine-induced cell death. J Biol Chem 271(28):16510–16514

    CAS  PubMed  Google Scholar 

  223. Vicart P, Caron A, Guicheney P, Li Z, Prevost M-C, Faure A, Chateau D, Chapon F, Tome F, Dupret J-M, Paulin D, Fardeau M (1998) A missense mutation in the αB-crystallin chaperone gene causes desmin-related myopathy. Nat Genet 20(1):92–95

    CAS  PubMed  Google Scholar 

  224. Xiao X-J, Benjamin IJ (1999) Stress–response proteins in cardiovascular disease. Am J Hum Genet 64(3):685–690

    CAS  PubMed Central  PubMed  Google Scholar 

  225. Olive M, Goldfarb L, Moreno D, Laforet E, Dagvadorj A, Sambuughin N, Martínez-Matos JA, Martínez F, Alió J, Farrero E, Vicart P, Ferrer I (2004) Desmin-related myopathy: clinical, electrophysiological, radiological, neuropathological and genetic studies. J Neurol Sci 219(1–2):125–137

    CAS  PubMed  Google Scholar 

  226. Chavez Zobel AT, Lornager A, Marceau N, Theriault JR, Lambert H, Landry J (2003) Distinct chaperone mechanisms can delay the formation of aggresomes by the myopathy-causing R120G αB-crystallin mutant. Hum Mol Genet 12(13):1609–1620

    CAS  PubMed  Google Scholar 

  227. Bova MP, Yaron O, Huang QL, Ding L, Haley DA, Stewart PL, Horwitz J (1999) Mutation R120G in αB-crystallin, which is linked to a desmin-related myopathy, results in an irregular structure and defective chaperone-like function. Proc Natl Acad Sci USA 96(11):6137–6142

    CAS  PubMed Central  PubMed  Google Scholar 

  228. Treweek TM, Rekas A, Lindner RA, Walker MJ, Aquilina JA, Robinson CV, Horwitz J, Perng MD, Quinlan RA, Carver JA (2005) R120G αB-crystallin promotes the unfolding of reduced α-lactalbumin and is inherently unstable. FEBS J 272(3):711–724

    CAS  PubMed  Google Scholar 

  229. Berry V, Francis P, Reddy MA, Collyer D, Vithana E, MacKay I, Dawson G, Carey AH, Moore A, Bhattacharya SS, Quinlan RA (2001) Alpha-B crystallin gene (CRYAB) mutation causes dominant congenital posterior polar cataract. Am J Hum Genet 69(5):1141–1145

    CAS  PubMed Central  PubMed  Google Scholar 

  230. Liu Y, Zhang X, Luo L, Wu M, Zeng R, Cheng G, Hu B, Liu B, Liang JJ, Shang F (2006) A novel αB-crystallin mutation associated with autosomal dominant congenital lamellar cataract. Invest Ophthalmol Vis Sci 47(3):1069–1075

    PubMed Central  PubMed  Google Scholar 

  231. Litt M, Kramer P, LaMorticella DM, Murphey W, Lovrien EW, Weleber RG (1998) Autosomal dominant congenital cataract associated with a missense mutation in the human alpha crystallin gene CRYAA. Hum Mol Genet 7(3):471–474

    CAS  PubMed  Google Scholar 

  232. Graw J, Loster J, Soewarto D, Fuchs H, Meyer B, Reis A, Wolf E, Balling R, Hrabe de Anglis M (2001) Characterization of a new, dominant V124E mutation in the mouse αA-crystallin-encoding gene. Invest Ophthalmol Vis Sci 42(12):2909–2915

    CAS  PubMed  Google Scholar 

  233. Shroff NP, Cherian-Shaw M, Bera S, Abraham EC (2000) Mutation of R116C results in highly oligomerized αA-crystallin with modified structure and defective chaperone-like function. Biochemistry 39:1420–1426

    CAS  PubMed  Google Scholar 

  234. Kumar LVS, Ramakrishna T, Rao CM (1999) Structural and functional consequences of the mutation of a conserved arginine residue in αA and αB crystallins. J Biol Chem 274(34):24137–24141

    CAS  PubMed  Google Scholar 

  235. Bera S, Abraham EC (2002) The αA-crystallin R116C mutant has a higher affinity for forming heteroaggregates with αB-crystallin. Biochemistry 41(1):297–305

    CAS  PubMed  Google Scholar 

  236. Berengian AR, Bova MP, Mchaourab HS (1997) Structure and function of the conserved domain in alphaA-crystallin. Site-directed spin labeling identifies a beta-strand located near a subunit interface. Biochemistry 36(33):9951–9957

    CAS  PubMed  Google Scholar 

  237. Gu F, Luo W, Li X, Wang Z, Lu S, Zhang M, Zhao B, Zhu S, Feng S, Yan Y, Huang S, Ma X (2008) A novel mutation in αA-crystallin (CRYAA) caused autosomal dominant congenital cataract in a large Chinese family. Hum Mutat 29(5):769

    PubMed  Google Scholar 

  238. Andley UP, Patel HC, Xi J-H (2002) The R116C mutation in αA-crystallin diminishes its protective ability against stress-induced lens epithelial cell apoptosis. J Biol Chem 277(12):10178–10186

    CAS  PubMed  Google Scholar 

  239. Santhiya ST, Söker T, Klopp N, Illig T, Prakash MVS, Selvaraj B, Gopinath PM, Graw J (2006) Identification of a novel, putative cataract-causing allele in CRYAA (G98R) in an Indian family. Mol Vis 12:768–773

    CAS  PubMed  Google Scholar 

  240. Xia C, Liu H, Chang B, Cheng C, Cheung D, Wang M, Huang QL, Horwitz J, Gong X (2006) Arginine 54 and tyrosine 118 residues of αA-crystallin are crucial for lens formation and transparency. Invest Ophthalmol Vis Sci 47(7):3004–3010

    PubMed  Google Scholar 

  241. Evgrafov OV, Mersiyanova I, Irobi J, Van Den Bosch L, Dierick I, Leung CL, Schagina O, Verpoorten N, Van Impe K, Fedotov V, Dadali E, Auer-Grumbach M, Windpassinger C, Wagner K, Mitrovic Z, Hilton-Jones D, Talbot K, Martin JJ, Vasserman N, Tverskaya S, Polyakov A, Liem RK, Gettemans J, Robberecht W, De Jonghe P, Timmerman V (2004) Mutant small heat-shock protein 27 causes axonal Charcot-Marie-Tooth disease and distal hereditary motor neuropathy. Nat Genet 36(6):602–606

    CAS  PubMed  Google Scholar 

  242. Fontaine J-M, Sun X, Hoppe AD, Simon S, Vicart P, Welsh MJ, Benndorf R (2006) Abnormal small heat shock protein interactions involving neuropathy-associated HSP22 (HSPB8) mutants. FASEB J 20(12):2168–2171

    CAS  PubMed  Google Scholar 

  243. Nakhro K, Park J-M, Kim YJ, Yoon BR, Yoo JH, Koo H, Choi B-O, Chung KW (2013) A novel Lys141Thr mutation in small heat shock protein 22 (HSPB8) gene in Charcot–Marie–Tooth disease type 2L. Neuromuscul Disord 23(8):656–663

    PubMed  Google Scholar 

  244. Irobi J, Van Impe K, Seeman P, Jordanova A, Dierick I, Verpoorten N, Michalik A, De Vriendt E, Jacobs A, Van Gerwen V, Vennekens K, Mazanec R, Tournev J, Broeckhoven J, Gettemans J, De Jonghe P, Timmerman V (2004) Hot-spot residue in small heat-shock protein 22 causes distal motor neuropathy. Nat Genet 36(6):597–601

    CAS  PubMed  Google Scholar 

  245. Tang B, Zhao G, Luo W, Xia K, Cai F, Pan Q, Zhang R, Zhang F, Jiang H, Long Z, Dai H (2005) Small heat-shock protein 22 mutated in autosomal dominant Charcot–Marie–Tooth disease type 2L. Hum Genet 116(3):222–224

    CAS  PubMed  Google Scholar 

  246. Houlden H, Laura M, Wavrant-De Vrièze F, Blake J, Wood N, Reilly MM (2008) Mutations in the HSP27 (HSPB1) gene cause dominant, recessive, and sporadic distal HMN/CMT type 2. Neurology 71(21):1660–1668

    CAS  PubMed  Google Scholar 

  247. Ikeda Y, Abe A, Ishida C, Takahashi K, Hayasaka K, Yamada M (2009) A clinical phenotype of distal hereditary motor neuronopathy type II with a novel HSPB1 mutation. J Neurol Sci 277(1–2):9–12

    CAS  PubMed  Google Scholar 

  248. Inagaki N, Hayashi T, Arimura T, Koga Y, Takahashi M, Shibata H, Teraoka K, Chikamori T, Yamashina A, Kimura A (2006) αB-Crystallin mutation in dilated cardiomyopathy. Biochem Biophys Res Commun 342(2):379–386

    CAS  PubMed  Google Scholar 

  249. Pilotto A, Marziliano N, Pasotti M, Grasso M, Costante AM, Arbustini E (2006) αB-Crystallin mutation in dilated cardiomyopathies: low prevalence in a consecutive series of 200 unrelated probands. Biochem Biophys Res Commun 346(4):1115–1117

    CAS  PubMed  Google Scholar 

  250. Selcen D, Engel AG (2003) Myofibrillar myopathy caused by novel dominant negative alpha B-crystallin mutations. Ann Neurol 54(6):804–810

    CAS  PubMed  Google Scholar 

  251. Luigetti M, Fabrizi GM, Madia F, Ferrarini M, Conte A, Del Grande A, Tasca G, Tonali PA, Sabatelli M (2010) A novel HSPB1 mutation in an Italian patient with CMT2/dHMN phenotype. J Neurol Sci 298(1–2):114–117

    CAS  PubMed  Google Scholar 

  252. Kijima K, Numakura C, Goto T, Takahashi T, Otagiri T, Umetsu K, Hayasaka K (2005) Small heat shock protein 27 mutation in a Japanese patient with distal hereditary motor neuropathy. J Hum Genet 50(9):473–476

    PubMed  Google Scholar 

  253. Del Bigio MR, Chudley AE, Sarnat HB, Campbell C, Goobie S, Chodirker BN, Selcen D (2011) Infantile muscular dystrophy in Canadian aboriginals is an αB-crystallinopathy. Ann Neurol 69(5):866–871

    PubMed Central  PubMed  Google Scholar 

  254. de Jong WW, Caspers GJ, Leunissen JA (1998) Genealogy of the alpha-crystallin-small heat-shock protein superfamily. Int J Biol Macromol 22(3–4):151–162

    PubMed  Google Scholar 

  255. Li H, Lu Q, Su Q, Su T, Li D, Yuan M, Liu J, Ren X, Zhang Z, Zeng S, Wang Q, Liu M (2008) Cataract mutation P20S of αB-crystallin impairs chaperone activity of αA-crystallin and induced apoptosis of human lens epithelial cells. Biochim Biophys Acta 1782(5):303–309

    CAS  PubMed  Google Scholar 

  256. Mackay DS, Andley UP, Sheils A (2003) Cell death triggered by a novel mutation in the alphaA-crystallin gene underlies autosomal dominant cataract linked to chromosome 21q. Eur J Hum Genet 11(10):784–793

    CAS  PubMed  Google Scholar 

  257. Pras E, Frydman M, Levy-Nissenbaum E, Bakhan T, Raz J, Assia EI, Goldman B, Pras E (2000) A nonsense mutation (W9X) in CRYAA causes autosomal recessive cataract in an inbred Jewish Persian family. Invest Ophthalmol Vis Sci 41(11):3511–3515

    CAS  PubMed  Google Scholar 

  258. Graw J, Klopp N, Illig T, Preising MN, Lorenz B (2006) Congenital cataract and macular hypoplasia in humans associated with a de novo mutation in CRYAA and compound heterozygous mutations in P. Graefes Arch Clin Exp Ophthalmol 244(8):912–919

    CAS  PubMed  Google Scholar 

  259. Hansen L, Yao W, Eiberg H, Kjaer KW, Baggesen K, Hejtmancik JF, Rosenberg T (2007) Genetic heterogeneity in microcornea-cataract: five novel mutations in CRYAA, CRYGD, and GJA8. Invest Ophthalmol Vis Sci 48(9):3937–3944

    PubMed  Google Scholar 

  260. Devi RR, Yao W, Vijayalakshmi P, Sergeev YV, Sundaresan P, Hejtmancik JF (2008) Crystallin gene mutations in Indian families with inherited pediatric cataract. Mol Vis 14:1157–1170

    CAS  PubMed Central  PubMed  Google Scholar 

  261. Bose S, Ehrnsperger M, Buchner J (1999) Mechanisms of ATP-independent vs ATP-dependent chaperones. In: Bukau B (ed) Molecular chaperones and folding catalysts: regulation, function and mechanisms. Harwood Academic Pub, Amsterdam, pp 637–660

    Google Scholar 

  262. Richter L, Flodman P, von-Bischhoffshausen FB, Burch D, Brown S, Nguyen L, Turner J, Spence MA, Bateman JB (2008) Clinical variability of autosomal dominant cataract, microcornea and corneal opacity and novel mutation in the alpha A crystallin gene (CRYAA). Am J Med Genet 146(7):833–842

    Google Scholar 

  263. Safieh LA, Khan AO, Alkuraya FS (2009) Identification of a novel CRYAB mutation associated with autosomal recessive juvenile cataract in a Saudi family. Mol Vis 15:980–984

    PubMed Central  PubMed  Google Scholar 

  264. Ghosh JG, Estrada MR, Clark JI (2005) Interactive domains for chaperone activity in the small heat shock protein, human αB-crystallin. Biochemistry 44(45):14854–14869

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank Dr Andrew Aquilina and Prof. Roger Truscott for valuable discussions and assistance with the preparation of this manuscript and Prof. John Clark and Dr Joy Ghosh for the co-ordinates of the αB-crystallin monomer. We also thank Prof. Justin Benesch for providing the X-ray crystal structure of the ACD and C-terminal region of αB-crystallin, and we are grateful to the anonymous reviewers for their helpful comments and suggestions. SM was supported by a Royal Society Dorothy Hodgkin Fellowship, HE is supported by an Australian Research Council Future Fellowship (FT110100586) and JC is supported by a National Health and Medical Research Council Project Grant (#1068087).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Teresa M. Treweek, Heath Ecroyd or John A. Carver.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Treweek, T.M., Meehan, S., Ecroyd, H. et al. Small heat-shock proteins: important players in regulating cellular proteostasis. Cell. Mol. Life Sci. 72, 429–451 (2015). https://doi.org/10.1007/s00018-014-1754-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1754-5

Keywords

Navigation