Skip to main content

Advertisement

Log in

Akt1 promotes stimuli-induced endothelial-barrier protection through FoxO-mediated tight-junction protein turnover

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Vascular permeability regulated by the vascular endothelial growth factor (VEGF) through endothelial-barrier junctions is essential for inflammation. Mechanisms regulating vascular permeability remain elusive. Although ‘Akt’ and ‘Src’ have been implicated in the endothelial-barrier regulation, it is puzzling how both agents that protect and disrupt the endothelial-barrier activate these kinases to reciprocally regulate vascular permeability. To delineate the role of Akt1 in endothelial-barrier regulation, we created endothelial-specific, tamoxifen-inducible Akt1 knockout mice and stable ShRNA-mediated Akt1 knockdown in human microvascular endothelial cells. Akt1 loss leads to decreased basal and angiopoietin1-induced endothelial-barrier resistance, and enhanced VEGF-induced endothelial-barrier breakdown. Endothelial Akt1 deficiency resulted in enhanced VEGF-induced vascular leakage in mice ears, which was rescued upon re-expression with Adeno-myrAkt1. Furthermore, co-treatment with angiopoietin1 reversed VEGF-induced vascular leakage in an Akt1-dependent manner. Mechanistically, our study revealed that while VEGF-induced short-term vascular permeability is independent of Akt1, its recovery is reliant on Akt1 and FoxO-mediated claudin expression. Pharmacological inhibition of FoxO transcription factors rescued the defective endothelial barrier due to Akt1 deficiency. Here we provide novel insights on the endothelial-barrier protective role of VEGF in the long term and the importance of Akt1-FoxO signaling on tight-junction stabilization and prevention of vascular leakage through claudin expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

VEGF:

Vascular endothelial growth factor

Ang-1:

Angiopoietin-1

VECad-Cre-Ak1:

Vascular endothelial cadherin-cre recombinase-Akt1 knockdown

HMEC:

Human microvascular endothelial cells

FoxO:

Forkhead box protein O

ECIS:

Electric cell-substrate impedance sensing

WT:

Wild type

GFP:

Green fluorescent protein

eNOS:

Endothelial nitric oxide synthase

AJ:

Adherens junction

TJ:

Tight junction

Zo:

Zona occludens

References

  1. Nagy JA, Dvorak AM, Dvorak HF (2012) Vascular hyperpermeability, angiogenesis, and stroma generation. Cold Spring Harbor Perspect Med 2:a006544

    Article  Google Scholar 

  2. Goddard LM, Iruela-Arispe ML (2013) Cellular and molecular regulation of vascular permeability. Thromb Haemost 109:407–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chen J, Somanath PR, Razorenova O et al (2005) Akt1 regulates pathological angiogenesis, vascular maturation and permeability in vivo. Nat Med 11:1188–1196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ha CH, Bennett AM, Jin ZG (2008) A novel role of vascular endothelial cadherin in modulating c-Src activation and downstream signaling of vascular endothelial growth factor. J Biol Chem 283:7261–7270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Daly C, Wong V, Burova E et al (2004) Angiopoietin-1 modulates endothelial cell function and gene expression via the transcription factor FKHR (FOXO1). Genes Dev 18:1060–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gavard J, Patel V, Gutkind JS (2008) Angiopoietin-1 prevents VEGF-induced endothelial permeability by sequestering Src through mDia. Dev Cell 14:25–36

    Article  CAS  PubMed  Google Scholar 

  7. Weis SM (2008) Vascular permeability in cardiovascular disease and cancer. Curr Opin Hematol 15:243–249

    Article  CAS  PubMed  Google Scholar 

  8. Augustin HG, Koh GY, Thurston G et al (2009) Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat Rev Mol Cell Biol 10:165–177

    Article  CAS  PubMed  Google Scholar 

  9. Murakami M, Nguyen LT, Zhuang ZW et al (2008) The FGF system has a key role in regulating vascular integrity. J Clin Invest 118:3355–3366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gavard J, Gutkind JS (2006) VEGF controls endothelial-cell permeability by promoting the beta-arrestin-dependent endocytosis of VE-cadherin. Nat Cell Biol 8:1223–1234

    Article  CAS  PubMed  Google Scholar 

  11. Esser S, Lampugnani MG, Corada M et al (1998) Vascular endothelial growth factor induces VE-cadherin tyrosine phosphorylation in endothelial cells. J Cell Sci 111(Pt 13):1853–1865

    CAS  PubMed  Google Scholar 

  12. Jones CA, London NR, Chen H et al (2008) Robo4 stabilizes the vascular network by inhibiting pathologic angiogenesis and endothelial hyperpermeability. Nat Med 14:448–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ngok SP, Geyer R, Liu M et al (2012) VEGF and Angiopoietin-1 exert opposing effects on cell junctions by regulating the Rho GEF Syx. J Cell Biol 199:1103–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Somanath PR, Kandel ES, Hay N et al (2007) Akt1 signaling regulates integrin activation, matrix recognition, and fibronectin assembly. J Biol Chem 282:22964–22976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. De Palma C, Meacci E, Perrotta C et al (2006) Endothelial nitric oxide synthase activation by tumor necrosis factor alpha through neutral sphingomyelinase 2, sphingosine kinase 1, and sphingosine 1 phosphate receptors: a novel pathway relevant to the pathophysiology of endothelium. Arterioscler Thromb Vasc Biol 26:99–105

    Article  PubMed  Google Scholar 

  16. Singleton PA, Chatchavalvanich S, Fu P et al (2009) Akt-mediated transactivation of the S1P1 receptor in caveolin-enriched microdomains regulates endothelial barrier enhancement by oxidized phospholipids. Circ Res 104:978–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ackah E, Yu J, Zoellner S et al (2005) Akt1/protein kinase Balpha is critical for ischemic and VEGF-mediated angiogenesis. J Clin Investig 115:2119–2127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xue Q, Hopkins B, Perruzzi C et al (2008) Palomid 529, a novel small-molecule drug, is a TORC1/TORC2 inhibitor that reduces tumor growth, tumor angiogenesis, and vascular permeability. Cancer Res 68:9551–9557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Somanath PR, Razorenova OV, Chen J et al (2006) Akt1 in endothelial cell and angiogenesis. Cell Cycle 5:512–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mukai Y, Rikitake Y, Shiojima I et al (2006) Decreased vascular lesion formation in mice with inducible endothelial-specific expression of protein kinase Akt. J Clin Invest 116:334–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Taddei A, Giampietro C, Conti A et al (2008) Endothelial adherens junctions control tight junctions by VE-cadherin-mediated upregulation of claudin-5. Nat Cell Biol 10:923–934

    Article  CAS  PubMed  Google Scholar 

  22. Ashida N, Senbanerjee S, Kodama S et al (2011) IKKbeta regulates essential functions of the vascular endothelium through kinase-dependent and -independent pathways. Nat Commun 2:318

    Article  PubMed  PubMed Central  Google Scholar 

  23. Qi X, Okamoto Y, Murakawa T et al (2010) Sustained delivery of sphingosine-1-phosphate using poly(lactic-co-glycolic acid)-based microparticles stimulates Akt/ERK-eNOS mediated angiogenesis and vascular maturation restoring blood flow in ischemic limbs of mice. Eur J Pharmacol 634:121–131

    Article  CAS  PubMed  Google Scholar 

  24. Kogata N, Arai Y, Pearson JT et al (2006) Cardiac ischemia activates vascular endothelial cadherin promoter in both preexisting vascular cells and bone marrow cells involved in neovascularization. Circ Res 98:897–904

    Article  CAS  PubMed  Google Scholar 

  25. Gao F, Al-Azayzih A, Somanath PR (2015) Discrete functions of GSK3alpha and GSK3beta isoforms in prostate tumor growth and micrometastasis. Oncotarget 6:5947–5962

    Article  PubMed  PubMed Central  Google Scholar 

  26. Goc A, Al-Azayzih A, Abdalla M et al (2013) P21 activated kinase-1 (Pak1) promotes prostate tumor growth and microinvasion via inhibition of transforming growth factor beta expression and enhanced matrix metalloproteinase 9 secretion. J Biol Chem 288:3025–3035

    Article  CAS  PubMed  Google Scholar 

  27. Al-Azayzih A, Gao F, Somanath PR (2015) P21 activated kinase-1 mediates transforming growth factor beta1-induced prostate cancer cell epithelial to mesenchymal transition. Biochim Biophys Acta 1853:1229–1239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Abdalla M, Goc A, Segar L et al (2013) Akt1 mediates alpha-smooth muscle actin expression and myofibroblast differentiation via myocardin and serum response factor. J Biol Chem 288:33483–33493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gavard J, Gutkind JS (2008) VE-cadherin and claudin-5: it takes two to tango. Nat Cell Biol 10:883–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Azzi S, Hebda JK, Gavard J (2013) Vascular permeability and drug delivery in cancers. Front Oncol 3:211

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ruan GX, Kazlauskas A (2012) Axl is essential for VEGF-A-dependent activation of PI3 K/Akt. EMBO J 31:1692–1703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Predescu D, Predescu S, Shimizu J et al (2005) Constitutive eNOS-derived nitric oxide is a determinant of endothelial junctional integrity. Am J Physiol Lung Cell Mol Physiol 289:L371–L381

    Article  CAS  PubMed  Google Scholar 

  33. Potente M, Urbich C, Sasaki K et al (2005) Involvement of Foxo transcription factors in angiogenesis and postnatal neovascularization. J Clin Invest 115:2382–2392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. O’Neill BT, Abel ED (2005) Akt1 in the cardiovascular system: friend or foe? J Clin Invest 115:2059–2064

    Article  PubMed  PubMed Central  Google Scholar 

  35. Oellerich MF, Potente M (2012) FOXOs and sirtuins in vascular growth, maintenance, and aging. Circ Res 110:1238–1251

    Article  CAS  PubMed  Google Scholar 

  36. Krug SM, Gunzel D, Conrad MP et al (2012) Claudin-17 forms tight junction channels with distinct anion selectivity. Cell Mol Life Sci 69:2765–2778

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Funds were provided by the National Institutes of Health Grant (R01HL103952) to PRS. This material is the result of work supported with resources and the use of facilities at the Charlie Norwood VAMC, Augusta, GA. The funders had no role in the study design, data collection, analysis and decision to publish. Preparation of the manuscript and the contents do not represent the views of the Department of Veterans Affairs or the United States Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Payaningal R. Somanath.

Ethics declarations

Conflict of interest

Authors declare that there are no financial or conflicts of interests exist.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (PDF 1433 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, F., Artham, S., Sabbineni, H. et al. Akt1 promotes stimuli-induced endothelial-barrier protection through FoxO-mediated tight-junction protein turnover. Cell. Mol. Life Sci. 73, 3917–3933 (2016). https://doi.org/10.1007/s00018-016-2232-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2232-z

Keywords

Navigation