Skip to main content

Advertisement

Log in

Tetraspanin1 promotes NGF signaling by controlling TrkA receptor proteostasis

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The molecular mechanisms that control the biosynthetic trafficking, surface delivery, and degradation of TrkA receptor are essential for proper nerve growth factor (NGF) function, and remain poorly understood. Here, we identify Tetraspanin1 (Tspan1) as a critical regulator of TrkA signaling and neuronal differentiation induced by NGF. Tspan1 is expressed by developing TrkA-positive dorsal root ganglion (DRG) neurons and its downregulation in sensory neurons inhibits NGF-mediated axonal growth. In addition, our data demonstrate that Tspan1 forms a molecular complex with the immature form of TrkA localized in the endoplasmic reticulum (ER). Finally, knockdown of Tspan1 reduces the surface levels of TrkA by promoting its preferential sorting towards the autophagy/lysosomal degradation pathway. Together, these data establish a novel homeostatic role of Tspan1, coordinating the biosynthetic trafficking and degradation of TrkA, regardless the presence of NGF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CNX:

Calnexin

DRG:

Dorsal root ganglia

ER:

Endoplasmic reticulum

Erk:

Extracellular signal-regulated kinase

GDNF:

Glial cell line-derived neurotrophic factor

Lamp1:

Lisosomal-associated membrane protein 1

NGF:

Nerve growth factor

PNS:

Peripheral nervous system

P75NTR:

p75 neurotrophin receptor

Ret:

Rearranged in transformation

RTK:

Receptor tyrosine kinase

TBP:

TATA-binding protein

TEMs:

Tetraspanin-enriched microdomains

TrkA:

Tropomyosin-related kinase A

Tspan:

Tetraspanin

References

  1. Bodmer D, Levine-Wilkinson S, Richmond A, Hirsh S, Kuruvilla R (2009) Wnt5a mediates nerve growth factor-dependent axonal branching and growth in developing sympathetic neurons. J Neurosci 29:7569–7581

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Gatto G, Dudanova I, Suetterlin P, Davies AM, Drescher U, Bixby JL, Klein R (2013) Protein tyrosine phosphatase receptor type O inhibits trigeminal axon growth and branching by repressing TrkB and Ret signaling. J Neurosci 33:5399–5410

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Lehigh KM, West KM, Ginty DD (2017) Retrogradely transported TrkA endosomes signal locally within dendrites to maintain sympathetic neuron synapses. Cell Rep 19:86–100

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Huang EJ, Reichardt LF (2003) Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem 72:609–642

    CAS  PubMed  Google Scholar 

  5. Paratcha G, Ledda F (2008) GDNF and GFRalpha: a versatile molecular complex for developing neurons. Trends Neurosci 31:384–391

    CAS  PubMed  Google Scholar 

  6. Glebova NO, Ginty DD (2004) Heterogeneous requirement of NGF for sympathetic target innervation in vivo. J Neurosci 24:743–751

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Lallemend F, Ernfors P (2012) Molecular interactions underlying the specification of sensory neurons. Trends Neurosci 35:373–381

    CAS  PubMed  Google Scholar 

  8. Luo W, Wickramasinghe SR, Savitt JM, Griffin JW, Dawson TM, Ginty DD (2007) A hierarchical NGF signaling cascade controls Ret-dependent and Ret-independent events during development of nonpeptidergic DRG neurons. Neuron 54:739–754

    CAS  PubMed  Google Scholar 

  9. Patel TD, Jackman A, Rice FL, Kucera J, Snider WD (2000) Development of sensory neurons in the absence of NGF/TrkA signaling in vivo. Neuron 25:345–357

    CAS  PubMed  Google Scholar 

  10. Kramer ER, Knott L, Su F, Dessaud E, Krull CE, Helmbacher F, Klein R (2006) Cooperation between GDNF/Ret and ephrinA/EphA4 signals for motor-axon pathway selection in the limb. Neuron 50:35–47

    CAS  PubMed  Google Scholar 

  11. Ma L, Tessier-Lavigne M (2007) Dual branch-promoting and branch-repelling actions of Slit/Robo signaling on peripheral and central branches of developing sensory axons. J Neurosci 27:6843–6851

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Ledda F, Bieraugel O, Fard SS, Vilar M, Paratcha G (2008) Lrig1 is an endogenous inhibitor of Ret receptor tyrosine kinase activation, downstream signaling, and biological responses to GDNF. J Neurosci 28:39–49

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Mandai K, Guo T, St Hillaire C, Meabon JS, Kanning KC, Bothwell M, Ginty DD (2009) LIG family receptor tyrosine kinase-associated proteins modulate growth factor signals during neural development. Neuron 63:614–627

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Meabon JS, de Laat R, Ieguchi K, Serbzhinsky D, Hudson MP, Huber BR, Wiley JC, Bothwell M (2016) Intracellular LINGO-1 negatively regulates Trk neurotrophin receptor signaling. Mol Cell Neurosci 70:1–10

    CAS  PubMed  Google Scholar 

  15. Franco M, Muratori C, Corso S, Tenaglia E, Bertotti A, Capparuccia L, Trusolino L, Comoglio PM, Tamagnone L (2010) The tetraspanin CD151 is required for Met-dependent signaling and tumor cell growth. J Biol Chem 285:38756–38764

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Hemler ME (2005) Tetraspanin functions and associated microdomains. Nat Rev Mol Cell Biol 6:801–811

    CAS  PubMed  Google Scholar 

  17. Liu Z, Shi H, Szymczak LC, Aydin T, Yun S, Constas K, Schaeffer A, Ranjan S, Kubba S, Alam E et al (2015) Promotion of bone morphogenetic protein signaling by tetraspanins and glycosphingolipids. PLoS Genet 11:e1005221

    PubMed  PubMed Central  Google Scholar 

  18. Odintsova E, Sugiura T, Berditchevski F (2000) Attenuation of EGF receptor signaling by a metastasis suppressor, the tetraspanin CD82/KAI-1. Curr Biol 10:1009–1012

    CAS  PubMed  Google Scholar 

  19. Odintsova E, Voortman J, Gilbert E, Berditchevski F (2003) Tetraspanin CD82 regulates compartmentalisation and ligand-induced dimerization of EGFR. J Cell Sci 116:4557–4566

    CAS  PubMed  Google Scholar 

  20. Tugues S, Honjo S, Konig C, Padhan N, Kroon J, Gualandi L, Li X, Barkefors I, Thijssen VL, Griffioen AW et al (2013) Tetraspanin CD63 promotes vascular endothelial growth factor receptor 2-beta1 integrin complex formation, thereby regulating activation and downstream signaling in endothelial cells in vitro and in vivo. J Biol Chem 288:19060–19071

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Yanez-Mo M, Barreiro O, Gordon-Alonso M, Sala-Valdes M, Sanchez-Madrid F (2009) Tetraspanin-enriched microdomains: a functional unit in cell plasma membranes. Trends Cell Biol 19:434–446

    CAS  PubMed  Google Scholar 

  22. Termini CM, Gillette JM (2017) Tetraspanins function as regulators of cellular signaling. Front Cell Dev Biol 5:34

    PubMed  PubMed Central  Google Scholar 

  23. Bassani S, Cingolani LA, Valnegri P, Folci A, Zapata J, Gianfelice A, Sala C, Goda Y, Passafaro M (2012) The X-linked intellectual disability protein TSPAN7 regulates excitatory synapse development and AMPAR trafficking. Neuron 73:1143–1158

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee SA, Suh Y, Lee S, Jeong J, Kim SJ, Kim SJ, Park SK (2017) Functional expression of dopamine D2 receptor is regulated by tetraspanin 7-mediated postendocytic trafficking. FASEB J 31:2301–2313

    CAS  PubMed  Google Scholar 

  25. Murru L, Moretto E, Martano G, Passafaro M (2018) Tetraspanins shape the synapse. Mol Cell Neurosci 91:76–81

    CAS  PubMed  Google Scholar 

  26. Murru L, Vezzoli E, Longatti A, Ponzoni L, Falqui A, Folci A, Moretto E, Bianchi V, Braida D, Sala M et al (2017) Pharmacological modulation of AMPAR rescues intellectual disability-like phenotype in Tm4sf2-/y mice. Cereb Cortex 27:5369–5384

    PubMed  PubMed Central  Google Scholar 

  27. Salas IH, Callaerts-Vegh Z, Arranz AM, Guix FX, D’Hooge R, Esteban JA, De Strooper B, Dotti CG (2017) Correction: Tetraspanin 6: A novel regulator of hippocampal synaptic transmission and long term plasticity. PLoS One 12:e0187179

    PubMed  PubMed Central  Google Scholar 

  28. Thiede-Stan NK, Tews B, Albrecht D, Ristic Z, Ewers H, Schwab ME (2015) Tetraspanin-3 is an organizer of the multi-subunit Nogo-A signaling complex. J Cell Sci 128:3583–3596

    CAS  PubMed  Google Scholar 

  29. Fontanet P, Irala D, Alsina FC, Paratcha G, Ledda F (2013) Pea3 transcription factor family members Etv4 and Etv5 mediate retrograde signaling and axonal growth of DRG sensory neurons in response to NGF. J Neurosci 33:15940–15951

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ledda F, Paratcha G, Sandoval-Guzman T, Ibanez CF (2007) GDNF and GFRalpha1 promote formation of neuronal synapses by ligand-induced cell adhesion. Nat Neurosci 10:293–300

    CAS  PubMed  Google Scholar 

  31. Franco ML, Melero C, Sarasola E, Acebo P, Luque A, Calatayud-Baselga I, Garcia-Barcina M, Vilar M (2016) Mutations in TrkA causing congenital insensitivity to pain with anhidrosis (CIPA) induce misfolding, aggregation, and mutation-dependent neurodegeneration by dysfunction of the autophagic flux. J Bioll Chem 291:21363–21374

    CAS  Google Scholar 

  32. Juenger H, Holst MI, Duffe K, Jankowski J, Baader SL (2005) Tetraspanin-5 (Tm4sf9) mRNA expression parallels neuronal maturation in the cerebellum of normal and L7En-2 transgenic mice. J Comp Neurol 483:318–328

    CAS  PubMed  Google Scholar 

  33. Tiwari-Woodruff SK, Kaplan R, Kornblum HI, Bronstein JM (2004) Developmental expression of OAP-1/Tspan-3, a member of the tetraspanin superfamily. J Neurosci Res 77:166–173

    CAS  PubMed  Google Scholar 

  34. Yamamoto Y, Grubisic K, Oelgeschlager M (2007) Xenopus Tetraspanin-1 regulates gastrulation movements and neural differentiation in the early Xenopus embryo. Differentiation 75:235–245

    CAS  PubMed  Google Scholar 

  35. Zemni R, Bienvenu T, Vinet MC, Sefiani A, Carrie A, Billuart P, McDonell N, Couvert P, Francis F, Chafey P et al (2000) A new gene involved in X-linked mental retardation identified by analysis of an X;2 balanced translocation. Nat Genet 24:167–170

    CAS  PubMed  Google Scholar 

  36. Watson FL, Porcionatto MA, Bhattacharyya A, Stiles CD, Segal RA (1999) TrkA glycosylation regulates receptor localization and activity. J Neurobiol 39:323–336

    CAS  PubMed  Google Scholar 

  37. Berditchevski F, Odintsova E (2007) Tetraspanins as regulators of protein trafficking. Traffic 8:89–96

    CAS  PubMed  Google Scholar 

  38. Alsina FC, Ledda F, Paratcha G (2012) New insights into the control of neurotrophic growth factor receptor signaling: implications for nervous system development and repair. J Neurochem 123:652–661

    CAS  PubMed  Google Scholar 

  39. Chen B, Zhao L, Li X, Ji YS, Li N, Xu XF, Chen ZY (2014) Syntaxin 8 modulates the post-synthetic trafficking of the TrkA receptor and inflammatory pain transmission. J Biol Chem 289:19556–19569

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Dornier E, Coumailleau F, Ottavi JF, Moretti J, Boucheix C, Mauduit P, Schweisguth F, Rubinstein E (2012) TspanC8 tetraspanins regulate ADAM10/Kuzbanian trafficking and promote Notch activation in flies and mammals. J Cell Biol 199:481–496

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Jouannet S, Saint-Pol J, Fernandez L, Nguyen V, Charrin S, Boucheix C, Brou C, Milhiet PE, Rubinstein E (2016) TspanC8 tetraspanins differentially regulate the cleavage of ADAM10 substrates, Notch activation and ADAM10 membrane compartmentalization. Cell Mol Life Sci 73:1895–1915

    CAS  PubMed  Google Scholar 

  42. Saint-Pol J, Billard M, Dornier E, Eschenbrenner E, Danglot L, Boucheix C, Charrin S, Rubinstein E (2017) New insights into the tetraspanin Tspan5 using novel monoclonal antibodies. J Biol Chem 292:9551–9566

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Scott-Solomon E, Kuruvilla R (2018) Mechanisms of neurotrophin trafficking via Trk receptors. Mol Cell Neurosci 91:25–33

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Yamashita N, Joshi R, Zhang S, Zhang ZY, Kuruvilla R (2017) Phospho-regulation of soma-to-axon transcytosis of neurotrophin receptors. Dev Cell 42(626–639):e625

    Google Scholar 

  45. Bronfman FC, Escudero CA, Weis J, Kruttgen A (2007) Endosomal transport of neurotrophins: roles in signaling and neurodegenerative diseases. Dev Neurobiol 67:1183–1203

    CAS  PubMed  Google Scholar 

  46. Salehi A, Delcroix JD, Mobley WC (2003) Traffic at the intersection of neurotrophic factor signaling and neurodegeneration. Trends Neurosci 26:73–80

    CAS  PubMed  Google Scholar 

  47. Mela A, Goldman JE (2013) CD82 blocks cMet activation and overcomes hepatocyte growth factor effects on oligodendrocyte precursor differentiation. J Neurosci 33:7952–7960

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Murayama Y, Shinomura Y, Oritani K, Miyagawa J, Yoshida H, Nishida M, Katsube F, Shiraga M, Miyazaki T, Nakamoto T et al (2008) The tetraspanin CD9 modulates epidermal growth factor receptor signaling in cancer cells. J Cell Physiol 216:135–143

    CAS  PubMed  Google Scholar 

  49. Tang M, Yin G, Wang F, Liu H, Zhou S, Ni J, Chen C, Zhou Y, Zhao Y (2015) Downregulation of CD9 promotes pancreatic cancer growth and metastasis through upregulation of epidermal growth factor on the cell surface. Oncol Rep 34:350–358

    CAS  PubMed  Google Scholar 

  50. Davenport EC, Pendolino V, Kontou G, McGee TP, Sheehan DF, Lopez-Domenech G, Farrant M, Kittler JT (2017) An essential role for the tetraspanin LHFPL4 in the cell-type-specific targeting and clustering of synaptic GABAA receptors. Cell Rep 21:70–83

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Ishibashi T, Ding L, Ikenaka K, Inoue Y, Miyado K, Mekada E, Baba H (2004) Tetraspanin protein CD9 is a novel paranodal component regulating paranodal junctional formation. J Neurosci 24:96–102

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Humeau Y, Gambino F, Chelly J, Vitale N (2009) X-linked mental retardation: focus on synaptic function and plasticity. J Neurochem 109:1–14

    CAS  PubMed  Google Scholar 

  53. Vincent AK, Noor A, Janson A, Minassian BA, Ayub M, Vincent JB, Morel CF (2012) Identification of genomic deletions spanning the PCDH19 gene in two unrelated girls with intellectual disability and seizures. Clin Genet 82:540–545

    CAS  PubMed  Google Scholar 

  54. Masoudi N, Ibanez-Cruceyra P, Offenburger SL, Holmes A, Gartner A (2014) Tetraspanin (TSP-17) protects dopaminergic neurons against 6-OHDA-induced neurodegeneration in C. elegans. PLoS Genet 10:e1004767

    PubMed  PubMed Central  Google Scholar 

  55. Cheng J, North BJ, Zhang T, Dai X, Tao K, Guo J, Wei W (2018) The emerging roles of protein homeostasis-governing pathways in Alzheimer’s disease. Aging Cell 17(5):e12801. https://doi.org/10.1111/acel.12801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hartl FU, Bracher A, Hayer-Hartl M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475:324–332

    CAS  PubMed  Google Scholar 

  57. Guix FX, Sannerud R, Berditchevski F, Arranz AM, Horre K, Snellinx A, Thathiah A, Saido T, Saito T, Rajesh S et al (2017) Tetraspanin 6: a pivotal protein of the multiple vesicular body determining exosome release and lysosomal degradation of amyloid precursor protein fragments. Mol Neurodegener 12:25

    PubMed  PubMed Central  Google Scholar 

  58. Yu T, Calvo L, Anta B, Lopez-Benito S, Lopez-Bellido R, Vicente-Garcia C, Tessarollo L, Rodriguez RE, Arevalo JC (2014) In vivo regulation of NGF-mediated functions by Nedd4-2 ubiquitination of TrkA. J Neurosci 34:6098–6106

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Marcal Vilar for TrkA-L213P construct, Dr. Michael G. Tomlinson for different Tspan constructs, Dr David Sabatini for Lamp1-RFP plasmid; Andrea Pecile and Manuel Ponce for animal care, Lic. Nerina Villalba and Dr. Sebastián Giusti for technical assistance, and Innova-T and UBATEC for research grant administration. This work was supported by the Argentine Agency for Promotion of Science and Technology (ANPCyT) PICT2015-3814, PICT2016-1512, PICT2017-4513. GP, FL, and TF were supported by an Independent Research Career Position from the Argentine Medical Research Council (CONICET). FFR, PAF, and APD were supported by a fellowship from CONICET.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: FFR, FL, and GP. Performed the experiments and statistical analysis: FFR, PAF, and AD. Analysis and interpretation of the data: FFR, TF, FL, and GP. Wrote the paper: GP.

Corresponding author

Correspondence to Gustavo Paratcha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1572 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrero Restelli, F., Fontanet, P.A., De Vincenti, A.P. et al. Tetraspanin1 promotes NGF signaling by controlling TrkA receptor proteostasis. Cell. Mol. Life Sci. 77, 2217–2233 (2020). https://doi.org/10.1007/s00018-019-03282-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03282-3

Keywords

Navigation