Skip to main content
Log in

Abridged Continuous Data Assimilation for the 2D Navier–Stokes Equations Utilizing Measurements of Only One Component of the Velocity Field

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We introduce a continuous data assimilation (downscaling) algorithm for the two-dimensional Navier–Stokes equations employing coarse mesh measurements of only one component of the velocity field. This algorithm can be implemented with a variety of finitely many observables: low Fourier modes, nodal values, finite volume averages, or finite elements. We provide conditions on the spatial resolution of the observed data, under the assumption that the observed data is free of noise, which are sufficient to show that the solution of the algorithm approaches, at an exponential rate asymptotically in time, to the unique exact unknown reference solution, of the 2D Navier–Stokes equations, associated with the observed (finite dimensional projection of) velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albanez, D., Nussenzveig-Lopes, H., Titi, E.S.: Continuous data assimilation for the three-dimensional Navier–Stokes-α model (2014) arXiv:1408.5470 [math.AP]

  2. Anthes R.A., Bernhardt P.A., Chen Y., Cucurull L., Dymond K.F., Ector D., Healy S.B., Ho S.-P., Hunt D.C., Kuo Y.-H., Liu H., Manning K., McCormick C., Meehan T.K., Randel W.J., Rocken C., Schreiner W.S., Sokolovskiy S.V., Syndergaard S., Thompson D.C., Trenberth K.E., Wee T.-K., Yen N.L., Zend Z.: THE COSMIC/FORMOSAT-3 mission: early results. Bull. Am. Meterol. Soc. 89(3), 313–333 (2008)

    Article  Google Scholar 

  3. Azouani A., Titi E.S.: Feedback control of nonlinear dissipative systems by finite determining parameters—a reaction–diffusion paradigm. Evol. Equ. Control Theory (EECT) 3(4), 579–594 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Azouani A., Olson E., Titi E.S.: Continuous data assimilation using general interpolant observables. J. Nonlinear Sci. 24(2), 277–304 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Bessaih H., Olson E., Titi E.S.: Continuous assimilation of data with stochastic noise. Nonlinearity 28, 729–753 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Blömker D., Law K.J.H., Stuart A.M., Zygalakis K.C.: Accuracy and stability of the continuous-times 3DVAR filter for the Navier–Stokes equations. Nonlinearity 26, 2193–2219 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Browning, G.L., Henshaw, W.D., Kreiss, H.O.: A numerical investigation of the interaction between the large scales and small scales of the two-dimensional incompressible Navier–Stokes equations. Research Report LA-UR-98-1712, Los Alamos National Laboratory (1998)

  8. Brézis H., Gallouet T.: Nonlinear Schrödinger evolution equations. Nonlinear Anal. 4(4), 677–681 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cockburn B., Jones D.A., Titi E.S.: Estimating the number of asymptotic degrees of freedom for nonlinear dissipative systems. Math. Comput. 66, 1073–1087 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Constantin, P., Foias, C.: Navier–Stokes Equations. Chicago Lectures in Mathematics. University of Chicago Press, Chicago (1988)

  11. Daley R.: Atmospheric Data Analysis, Cambridge Atmospheric and Space Science Series. Cambridge University Press, Cambridge (1991)

    Google Scholar 

  12. Dascaliuc R., Foias C., Jolly M.: Estimates on enstrophy, palinstrophy, and invariant measures for 2-d turbulence. J. Differ. Equ. 248, 792–819 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Farhat A., Jolly M.S., Titi E.S.: Continuous data assimilation for the 2D Bénard convection through velocity measurements alone. Physica D: Nonlinear Phenomena. 303, 59–66 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  14. Farhat, A., Lunasin, E., Titi, E.S.: Data assimilation algorithm for 3D Bénard convection in porous media employing only temperature measurements (2015) arXiv:1506.08678 [math.AP]

  15. Farhat, A., Lunasin, E., Titi, E.S.: A note on abridged continuous data assimilation for the 3D subgrid scale α-models of turbulence, preprint

  16. Foias C., Jolly M.S., Kravchenko R., Titi E.S.: A unified approach to determining forms for the 2D Navier–Stokes equations—the general interpolants case. Russ. Math. Surv. 69(2), 359–381 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Foias C., Manley O., Rosa R., Temam R.: Navier–Stokes Equations and Turbulence. Encyclopedia of Mathematics and Its Applications, vol. 83. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  18. Foias C., Prodi G.: Sur le comportement global des solutions non-stationnaires des équations de Navier–Stokes en dimension 2. Rend. Sem. Mat. Univ. Padova 39, 1–34 (1967)

    MathSciNet  Google Scholar 

  19. Foias, C., Temam, R.: Asymptotic numerical analysis for the Navier–Stokes equations. In: Barenblatt, G.I., Iooss, G., Joseph, D. (eds.) Nonlinear Dynamics and Turbulence, pp. 139–155. Pitman, London (1983)

  20. Foias C., Temam R.: Determination of the solutions of the Navier–Stokes equations by a set of nodal values. Math. Comput. 43, 117–133 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Foias C., Titi E.S.: Determining nodes, finite difference schemes and inertial manifolds. Nonlinearity 4(1), 135–153 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Gesho, M.: A Numerical Study of Continuous Data Assimilation Using Nodal Points in Space for the Two-dimensional Navier–Stokes Equations. Masters Thesis, University of Nevada, Department of Mathematics and Statistics (2013)

  23. Hayden K., Olson E., Titi E.S.: Discrete data assimilation in the Lorenz and 2D Navier–Stokes equations. Physica D 240, 1416–1425 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Henshaw W.D., Kreiss H.O., Yström J.: Numerical experiments on the interaction between the large- and small-scale motion of the Navier–Stokes equations. SIAM J. Multiscale Model. Simul. 1, 119–149 (2003)

    Article  MATH  Google Scholar 

  25. Holst M.J., Titi E.S.: Determining projections and functionals for weak solutions of the Navier–Stokes equations. Contemp. Math. 204, 125–138 (1997)

    Article  MathSciNet  Google Scholar 

  26. Jones D.A., Titi E.S.: Determining finite volume elements for the 2D Navier–Stokes equations. Physica D 60, 165–174 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Jones D.A., Titi E.S.: Upper bounds on the number of determining modes, nodes and volume elements for the Navier–Stokes equations. Indiana Univ. Math. J. 42(3), 875–887 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  28. Korn P.: Data assimilation for the Navier–Stokes-α equations. Physica D 238, 1957–1974 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Lunasin, E., Titi, E.S.: Finite determining parameters feedback control for distributed nonlinear dissipative systems—a computational study (2015) arXiv:1506.03709v1 [math.AP]

  30. Markowich, P., Titi, E.S., Trabelsi, S.: Continuous data assimilation for the three-dimensional Brinkman–Forchheimer-extended Darcy model (2015) arXiv:150.00964v1 [math.AP]

  31. Olson E., Titi E.S.: Determining modes for continuous data assimilation in 2D turbulence. J. Stat. Phys. 113(5–6), 799–840 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  32. Olson E., Titi E.S.: Determining modes and Grashoff number in 2D turbulence. Theor. Comput. Fluid Dyn. 22(5), 327–339 (2008)

    Article  MATH  Google Scholar 

  33. Robinson, J.C.: Infinite-dimensional Dynamical Systems. An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2001)

  34. Temam, R.: Infinite Dimensional Dynamical Systems in Mechanics and Physics, 2nd edn. Applied Mathematical Sciences, vol. 68. Springer-Verlag, New York (1997)

  35. Temam, R.: Navier–Stokes Equations and Nonlinear Functional Analysis, 2nd edn. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 66. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1995)

  36. Temam, R.: Navier–Stokes Equations: Theory and Numerical Analysis. AMS Chelsea Publishing, Providence (2001). Reprint of the 1984 edition

  37. Titi E.S.: On a criterion for locating stable stationary solutions to the Navier–Stokes equations. Nonlinear Anal. TMA 11, 1085–1102 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  38. Improving Hurricane Prediction with GPS Occultation. http://www.planetiq.com

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aseel Farhat.

Additional information

Communicated by A. V. Fursikov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farhat, A., Lunasin, E. & Titi, E.S. Abridged Continuous Data Assimilation for the 2D Navier–Stokes Equations Utilizing Measurements of Only One Component of the Velocity Field. J. Math. Fluid Mech. 18, 1–23 (2016). https://doi.org/10.1007/s00021-015-0225-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-015-0225-6

Mathematics Subject Classification

Keywords

Navigation