Skip to main content
Log in

A Nonlocal Shallow-Water Model Arising from the Full Water Waves with the Coriolis Effect

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

In the present study a mathematical model of the equatorial water waves propagating mainly in one direction with the effect of Earth’s rotation is derived by the formal asymptotic procedures in the equatorial zone. Such a model equation is analogous to the Camassa–Holm approximation of the two-dimensional incompressible and irrotational Euler equations and has a formal bi-Hamiltonian structure. Its solution corresponding to physically relevant initial perturbations is more accurate on a much longer time scale. It is shown that the deviation of the free surface can be determined by the horizontal velocity at a certain depth in the second-order approximation. The effects of the Coriolis force caused by the Earth rotation and nonlocal higher nonlinearities on blow-up criteria and wave-breaking phenomena are also investigated. Our refined analysis is approached by applying the method of characteristics and conserved quantities to the Riccati-type differential inequality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amick, C., Toland, J.: On solitary waves of finite amplitude. Arch. Rat. Mech. Anal. 76, 9–95 (1981)

    Article  MathSciNet  Google Scholar 

  2. Benjamin, T., Bona, J., Mahony, J.: Model equations for long waves in nonlinear dispersive media. Philos. Trans. R. Soc. Lond. A 272, 47–78 (1972)

    Article  ADS  Google Scholar 

  3. Benjamin, T., Olver, P.: Hamiltonian structure, symmetries and conservation laws for water waves. J. Fluid Mech. 125, 137–185 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  4. Bona, J.L., Colin, T., Lannes, D.: Long wave approximations for water waves. Arch. Ration. Mech. Anal. 178, 373–410 (2005)

    Article  MathSciNet  Google Scholar 

  5. Boutet de Monvel, A., Kostenko, A., Shepelsky, D., Teschl, G.: Long-time asymptotics for the Camassa–Holm equation. SIAM J. Math. Anal. 41, 1559–1588 (2009)

    Article  MathSciNet  Google Scholar 

  6. Brandolese, L.: Local-in-space criteria for blowup in shallow water and dispersive rod equations. Commun. Math. Phys. 330, 401–414 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  7. Brandolese, L., Cortez, M.F.: Blowup issues for a class of nonlinear dispersive wave equations. J. Differ. Equ. 256, 3981–3998 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  8. Brun, M.K., Kalisch, H.: Convective wave breaking in the KdV equation. Anal. Math. Phys. 8, 57–75 (2018)

    Article  MathSciNet  Google Scholar 

  9. Camassa, R., Holm, D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  10. Chen, M., Gui, G., Liu, Y.: On a shallow-water approximation to the Green-Naghdi equations with the Coriolis effect. Adv. Math. 340, 106–137 (2018)

    Article  MathSciNet  Google Scholar 

  11. Constantin, A.: Nonlinear water waves with applications to wave-current interactions and Tsunamis. In: CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), vol. 81, Philadelphia (2011)

  12. Constantin, A.: On the modelling of equatorial waves. Geophys. Res. Lett. 39, L05602 (2012)

    Article  ADS  Google Scholar 

  13. Constantin, A.: On the scattering problem for the Camassa–Holm equation. Proc. R. Soc. Lond. A 457, 953–970 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  14. Constantin, A.: The trajectories of particles in Stokes waves. Invent. Math. 166, 523–535 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  15. Constantin, A.: Particle trajectories in extreme Stokes waves. IMA J. Appl. Math. 77, 293–307 (2012)

    Article  MathSciNet  Google Scholar 

  16. Constantin, A., Escher, J.: Particle trajectories in solitary water waves. Bull. Am. Math. Soc. 44, 423–431 (2007)

    Article  MathSciNet  Google Scholar 

  17. Constantin, A., Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181, 229–243 (1998)

    Article  MathSciNet  Google Scholar 

  18. Constantin, A., Gerdjikov, V.S., Ivanov, R.I.: Inverse scattering transform for the Camassa–Holm equation. Inverse Probl. 22, 2197–2207 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  19. Constantin, A., Lannes, D.: The hydrodynamical relevance of the Camassa–Holm and Degasperis–Procesi equations. Arch. Ration. Mech. Anal. 192(1), 165–186 (2009)

    Article  MathSciNet  Google Scholar 

  20. Constantin, A., Mckean, H.P.: A shallow water equation on the circle. Commun. Pure Appl. Math. 52, 949–982 (1999)

    Article  MathSciNet  Google Scholar 

  21. Constantin, A., Strauss, W.: Stability of peakons. Commun. Pure Appl. Math. 53, 603–610 (2000)

    Article  MathSciNet  Google Scholar 

  22. Craig, W.: An existence theory for water waves and the Boussinesq and Korteweg-de Vries scaling limits. Commun. Partial Differ. Equ. 10, 787–1003 (1985)

    Article  MathSciNet  Google Scholar 

  23. Danchin, R.: A few remarks on the Camassa–Holm equation. Differ. Integr. Equ. 14, 953–988 (2001)

    MathSciNet  MATH  Google Scholar 

  24. Fuchssteiner, B., Fokas, A.S.: Symplectic structures, their Bäcklund transformations and hereditary symmetries. Physica D. 4, 47–66 (1981/1982)

    Article  MathSciNet  ADS  Google Scholar 

  25. Gallagher, I., Saint-Raymond, L.: On the influence of the Earth’s rotation on geophysical flows. Handbook of Mathematical Fluid Mechanics 4, 201–329 (2007)

    MathSciNet  Google Scholar 

  26. Gardner, C.S., Kruskal, M.D., Miura, R.: Korteweg-de Vries equation and generalizations, II. Existence of conservation laws and constants of motion. J. Math. Phys. 9(8), 1204–1209 (1968)

    Article  MathSciNet  ADS  Google Scholar 

  27. Geyer, A., Quirchmayr, R.: Shallow water equations for equatorial tsunami waves. Philos. Trans. R. Soc. A 376, 20170100 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  28. Ionescu-Kruse, D.: Variational derivation of a geophysical Camassa–Holm type shallow water equation. Nonlinear Anal. 156, 286–294 (2017)

    Article  MathSciNet  Google Scholar 

  29. Ivanov, R.: Hamiltonian model for coupled surface and internal waves in the presence of currents. Nonlinear Anal.: Real World Appl. 34, 316–334 (2017)

    Article  MathSciNet  Google Scholar 

  30. Johnson, R.S.: Camassa–Holm, Korteweg-de Vries and related models for water waves. J. Fluid Mech. 455, 63–82 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  31. Johnson, R.S.: A modern introduction to the mathematical theory of water waves. Camb. Univ. Press 19, 24–31 (1997)

    ADS  Google Scholar 

  32. Lenells, J.: A variational approach to the stability of periodic peakons. J. Nonlinear Math. Phys. 11, 151–163 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  33. Korteweg, D.J., de Vries, G.: On the change of form of long waves advancing in a rectangular channel, and on a new type of long stationary waves. Philos. Mag. 39(5), 422–442 (1895)

    Article  MathSciNet  Google Scholar 

  34. Mckean, H.P.: Breakdown of the Camassa–Holm equation. Commun. Pure Appl. Math. LVI I, 0416–0418 (2004)

    Article  MathSciNet  Google Scholar 

  35. Russell, J.S.: Report on water waves. British Assoc, Report (1844)

  36. Stokes, G.G.: On the Theory of Oscillatory Waves, vol. I, pp. 197–229. Cambridge University Press, Cambridge (1880)

    Google Scholar 

  37. Toland, J.: On the existence of a wave of greatest height and Stokes’ conjecture. Proc. R. Soc. Lond. A 363, 469–485 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  38. Whitham, G.: Linear and Nonlinear Waves. Wiley, New York (1973)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for constructive suggestions and comments. The work of Gui is supported in part by the NSF-China under the Grant Nos. 11571279, 11331005, and the Foundation FANEDD-201315. The work of Liu is supported in part by the Simons Foundation Grant-499875.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Liu.

Ethics declarations

Conflict of interest

The authors certify that they have no conflicts of interest concerning this work.

Additional information

Communicated by A. Constantin

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gui, G., Liu, Y. & Sun, J. A Nonlocal Shallow-Water Model Arising from the Full Water Waves with the Coriolis Effect. J. Math. Fluid Mech. 21, 27 (2019). https://doi.org/10.1007/s00021-019-0432-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-019-0432-7

Mathematics Subject Classification

Keywords

Navigation