Skip to main content
Log in

\(L^{p}\) Theory for the Interaction Between the Incompressible Navier–Stokes System and a Damped Plate

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We consider a viscous incompressible fluid governed by the Navier–Stokes system written in a domain where a part of the boundary can deform. We assume that the corresponding displacement follows a damped beam equation. Our main results are the existence and uniqueness of strong solutions for the corresponding fluid-structure interaction system in an \(L^p\)-\(L^q\) setting for small times or for small data. An important ingredient of the proof consists in the study of a linear parabolic system coupling the non stationary Stokes system and a damped plate equation. We show that this linear system possesses the maximal regularity property by proving the \({\mathcal {R}}\)-sectoriality of the corresponding operator. The proof of the main results is then obtained by an appropriate change of variables to handle the free boundary and a fixed point argument to treat the nonlinearities of this system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev spaces, vol. 140 of Pure and Applied Mathematics (Amsterdam), 2nd ed. Elsevier/Academic Press, Amsterdam (2003)

  2. Amann, H.: Linear and quasilinear parabolic problems. Vol. I, vol. 89 of Monographs in Mathematics, Birkhäuser Boston, Inc., Boston, MA, (1995). Abstract linear theory

  3. Amann, H.: On the strong solvability of the Navier–Stokes equations. J. Math. Fluid Mech. 2, 16–98 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  4. Amann, H.: Anisotropic function spaces and maximal regularity for parabolic problems. Part 1, vol. 6 of Jindřich Nečas Center for Mathematical Modeling Lecture Notes, Matfyzpress, Prague, (2009). Function spaces

  5. Badra, M., Takahashi, T.: Feedback boundary stabilization of 2D fluid-structure interaction systems. Discrete Contin. Dyn. Syst. 37, 2315–2373 (2017)

    Article  MathSciNet  Google Scholar 

  6. Badra, M., Takahashi, T.: Gevrey regularity for a system coupling the Navier–Stokes system with a beam equation. SIAM J. Math. Anal. 51, 4776–4814 (2019)

    Article  MathSciNet  Google Scholar 

  7. Beirão da Veiga, H.: On the existence of strong solutions to a coupled fluid-structure evolution problem. J. Math. Fluid Mech. 6, 21–52 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  8. Bravin, M.: Energy equality and uniqueness of weak solutions of a viscous incompressible fluid + rigid body system with Navier slip-with-friction conditions in a 2D bounded domain. J. Math. Fluid Mech. 21, 31 (2019)

    Article  MathSciNet  Google Scholar 

  9. Chambolle, A., Desjardins, B., Esteban, M.J., Grandmont, C.: Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate. J. Math. Fluid Mech. 7, 368–404 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  10. Clément, P., Prüss, J.: An operator-valued transference principle and maximal regularity on vector-valued \(L_p\)-spaces, In: Evolution equations and their applications in physical and life sciences (Bad Herrenalb, 1998), vol. 215 of Lecture Notes in Pure and Appl. Math., Dekker, New York, (2001), pp. 67–87

  11. Denk, R., Hieber, M., Prüss, J.: \({\mathscr {R}}\)-boundedness, Fourier multipliers and problems of elliptic and parabolic type. Mem. Am. Math. Soc. 166, viii+114 (2003)

    MathSciNet  MATH  Google Scholar 

  12. Denk, R., Schnaubelt, R.: A structurally damped plate equation with Dirichlet-Neumann boundary conditions. J. Differ. Equ. 259, 1323–1353 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  13. Dore, G.: \(L^p\) regularity for abstract differential equations, In: Functional analysis and related topics, 1991 (Kyoto), vol. 1540 of Lecture Notes in Math. Springer, Berlin, (1993), pp. 25–38

  14. Engel, K.-J., Nagel, R.: One-parameter semigroups for linear evolution equations, vol. 194 of Graduate Texts in Mathematics, Springer-Verlag, New York, (2000). With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. Schnaubelt

  15. Enomoto, Y., Shibata, Y.: On the \({\mathscr {R}}\)-sectoriality and the initial boundary value problem for the viscous compressible fluid flow. Funkcial. Ekvac. 56, 441–505 (2013)

    Article  MathSciNet  Google Scholar 

  16. Ervedoza, S., Hillairet, M., Lacave, C.: Long-time behavior for the two-dimensional motion of a disk in a viscous fluid. Commun. Math. Phys. 329, 325–382 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  17. Fujiwara, D., Morimoto, H.: An \(L_{r}\)-theorem of the Helmholtz decomposition of vector fields. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24, 685–700 (1977)

    MathSciNet  MATH  Google Scholar 

  18. Geissert, M., Götze, K., Hieber, M.: \(L^p\)-theory for strong solutions to fluid-rigid body interaction in Newtonian and generalized Newtonian fluids. Trans. Am. Math. Soc. 365, 1393–1439 (2013)

    Article  Google Scholar 

  19. Geissert, M., Hess, M., Hieber, M., Schwarz, C., Stavrakidis, K.: Maximal \(L^p\)-\(L^q\)-estimates for the Stokes equation: a short proof of Solonnikovs theorem. J. Math. Fluid Mech. 12, 47–60 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  20. Glass, O., Sueur, F.: Uniqueness results for weak solutions of two-dimensional fluid-solid systems. Arch. Ration. Mech. Anal. 218, 907–944 (2015)

    Article  MathSciNet  Google Scholar 

  21. Grandmont, C.: Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate. SIAM J. Math. Anal. 40, 716–737 (2008)

    Article  MathSciNet  Google Scholar 

  22. Grandmont, C., Hillairet, M.: Existence of global strong solutions to a beam-fluid interaction system. Arch. Ration. Mech. Anal. 220, 1283–1333 (2016)

    Article  MathSciNet  Google Scholar 

  23. Grandmont, C., Hillairet, M., Lequeurre, J.: Existence of local strong solutions to fluid-beam and fluid-rod interaction systems. Ann. de lInstitut Henri Poincaré C Anal. Non Linéaire 36, 1105–1149 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  24. Grandmont, C., Lukáčová-Medvid’ová, M., Nečasová, V.: Mathematical and numerical analysis of some FSI problems. In: Fluid-structure interaction and biomedical applications. Adv. Math. Fluid Mech., Birkhäuser/Springer, Basel, pp. 1–77 (2014)

  25. Guidoboni, G., Guidorzi, M., Padula, M.: Continuous dependence on initial data in fluid-structure motions. J. Math. Fluid Mech. 14, 1–32 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  26. Guidorzi, M., Padula, M., Plotnikov, P.I.: Hopf solutions to a fluid-elastic interaction model. Math. Models Methods Appl. Sci. 18, 215–269 (2008)

    Article  MathSciNet  Google Scholar 

  27. Haak, B.H., Maity, D., Takahashi, T., Tucsnak, M.: Mathematical analysis of the motion of a rigid body in a compressible Navier–Stokes–Fourier fluid. Math. Nachr. 292, 1972–2017 (2019)

    Article  MathSciNet  Google Scholar 

  28. Hieber, M., Murata, M.: The \(L^p\)-approach to the fluid-rigid body interaction problem for compressible fluids. Evol. Equ. Control Theory 4, 69–87 (2015)

    Article  MathSciNet  Google Scholar 

  29. Kunstmann, P.C., Weis, L.: Perturbation theorems for maximal \(L_{p}\)-regularity. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 30(4), 415–435 (2001)

    MathSciNet  MATH  Google Scholar 

  30. Kunstmann, P.C., Weis, L.: Maximal \(L_{p}\)-regularity for parabolic equations, Fourier multiplier theorems and \(H^{\infty }\)-functional calculus. In: Functional analytic methods for evolution equations, vol. 1855 of Lecture Notes in Math. Springer, Berlin, pp. 65–311 (2004)

  31. Lacave, C., Takahashi, T.: Small moving rigid body into a viscous incompressible fluid. Arch. Ration. Mech. Anal. 223, 1307–1335 (2017)

    Article  MathSciNet  Google Scholar 

  32. Lequeurre, J.: Existence of strong solutions to a fluid-structure system. SIAM J. Math. Anal. 43, 389–410 (2011)

    Article  MathSciNet  Google Scholar 

  33. Lions, J.-L., Magenes, E.: Problemi ai limiti non omogenei. V, Ann. Scuola Norm Sup. Pisa 16(3), 1–44 (1962)

    MathSciNet  MATH  Google Scholar 

  34. Maity, D., Raymond, J.-P., Roy, A.: Maximal-in-time existence and uniqueness of strong solution of a 3D fluid-structure interaction model. SIAM J. Math. Anal. 52, 6338–6378 (2020)

    Article  MathSciNet  Google Scholar 

  35. Maity, D., Tucsnak, M.: A maximal regularity approach to the analysis of some particulate flows, In: Particles in flows. Adv. Math. Fluid Mech., Birkhäuser/Springer, Cham, pp. 1–75 (2017)

  36. Maity, D., Tucsnak, M.: \(L^p\)-\(L^q\) maximal regularity for some operators associated with linearized incompressible fluid-rigid body problems Selected Recent Results. In: Mathematical analysis in fluid mechanics selected recent results, vol. 710 of Contemp. Math. Amer. Math. Soc., Providence, RI, pp. 175–201 (2018)

  37. Muha, B., Canić, S.: Existence of a weak solution to a nonlinear fluid-structure interaction problem modeling the flow of an incompressible, viscous fluid in a cylinder with deformable walls. Arch. Ration. Mech. Anal. 207, 919–968 (2013)

    Article  MathSciNet  Google Scholar 

  38. Quarteroni, A., Tuveri, M., Veneziani, A.: Computational vascular fluid dynamics: problems, models and methods. Comput. Vis. Sci. 2, 163–197 (2000)

    Article  Google Scholar 

  39. Raymond, J.-P.: Stokes and Navier–Stokes equations with nonhomogeneous boundary conditions. Ann. Inst. H. Poincaré Anal. Non Linéaire 24, 921–951 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  40. Raymond, J.-P.: Feedback stabilization of a fluid-structure model. SIAM J. Control Optim. 48, 5398–5443 (2010)

    Article  MathSciNet  Google Scholar 

  41. Runst, T., Sickel, W.: Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations. vol. 3 of De Gruyter Series in Nonlinear Analysis and Applications, Walter de Gruyter & Co., Berlin (1996)

  42. Temam, R.: Navier-Stokes equations, vol. 2 of Studies in Mathematics and its Applications, North-Holland Publishing Co., Amsterdam-New York, revised ed., (1979). Theory and numerical analysis, With an appendix by F. Thomasset

  43. Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators, 2nd edn. Johann Ambrosius Barth, Heidelberg (1995)

    MATH  Google Scholar 

  44. Triebel, H.: Theory of function spaces, Modern Birkhäuser Classics, Birkhäuser/Springer Basel AG, Basel, (2010). Reprint of 1983 edition [MR0730762], Also published in 1983 by Birkhäuser Verlag [MR0781540]

  45. Weis, L.: Operator-valued Fourier multiplier theorems and maximal \(L_p\)-regularity. Math. Ann. 319, 735–758 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takéo Takahashi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by C. Grandmont.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Debayan Maity was partially supported by INSPIRE faculty fellowship (IFA18-MA128) and by Department of Atomic Energy, Government of India, under Project No. 12-R & D-TFR-5.01-0520.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maity, D., Takahashi, T. \(L^{p}\) Theory for the Interaction Between the Incompressible Navier–Stokes System and a Damped Plate. J. Math. Fluid Mech. 23, 103 (2021). https://doi.org/10.1007/s00021-021-00628-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-021-00628-5

Keywords

Mathematics Subject Classification

Navigation