Skip to main content
Log in

Global Classical Solution to the Navier–Stokes–Vlasov Equations with Large Initial Data and Reflection Boundary Conditions

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

The fluid-particle system is studied in this paper. More precisely, we consider the compressible Navier–Stokes equations coupled to the Vlasov equation through the drag force. This model arises from the research of aerosols, sprays or more generically two-phase flows. We work with one-dimensional case of this model, and prove the existence, uniqueness of global classical solution to an initial-boundary value problem with large initial data and reflection boundary conditions. The proof is based on the local existence theorem and the global a priori estimates. More specifically, we show that the density distribution function of particles has compact support, which plays a crucial role in the hardest part of our proof: the estimates of the higher order derivatives of the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antontsev, S.N., Kazhikhov, A.V., Monakhov, V.N.: Boundary Value Problems in Mechanics of Nonhomogeneous Fluids. Amsterdam, North-Holland (1990)

    MATH  Google Scholar 

  2. Bae, H.O., Choi, Y.P., Ha, S.Y., Kang, M.J.: Asymptotic flocking dynamics of Cucker–Smale particles immersed in compressible fluids. Discrete Contin. Dyn. Syst. 34, 4419–4458 (2014)

    Article  MathSciNet  Google Scholar 

  3. Baranger, C., Boudin, L., Jabin, P.E., Mancini, S.: A modelling of biospray for the upper airways. ESAIM Proc. 14, 41–47 (2005)

    Article  Google Scholar 

  4. Baranger, C., Desvillettes, L.: Coupling Euler and Vlasov equations in the context of sprays: the local-in-time, classical solutions. J. Hyperbolic Differ. Eqn. 3(1), 1–26 (2009)

    MathSciNet  MATH  Google Scholar 

  5. Boudin, L., Desvillettes, L., Grandmont, C., Moussa, A.: Global existence of solutions for the coupled Vlasov and Navier–Stokes equations. Differ. Integral Eqn. 22, 1247–1271 (2009)

    MathSciNet  MATH  Google Scholar 

  6. Boudin, L., Grandmont, C., Moussa, A.: Global existence of solutions to the incompressible Navier–Stokes–Vlasov equations in a time-dependent domain. J. Differ. Eqn. 262, 1317–1340 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  7. Boudin, L., Michel, D., Moussa, A.: Global existence of weak solutions to the incompressible Vlasov–Navier–Stokes system coupled to convection-diffusion equations. Math. Models Methods Appl. Sci. 30(8), 1485–1515 (2020)

    Article  MathSciNet  Google Scholar 

  8. Clouet, J.F., Domelevo, K.: Solutions of a kinetic stochastic equation modeling a spray in a turbulent gas flow. Math. Models Methods Appl. Sci. 7, 239–363 (1997)

    Article  MathSciNet  Google Scholar 

  9. Choi, Y.P.: Finite-time blow up phenomena of Vlasov/Navier–Stokes equations and related systems. J. Math. Pures Appl. 108(6), 991–1021 (2017)

    Article  MathSciNet  Google Scholar 

  10. Choi, Y.-P.: Large-time behavior for the Vlasov/compressible Navier–Stokes equations. J. Math. Phys. 57(7), 071501 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  11. Choi, Y.P., Kwon, B.: Global well-posedness and large-time behavior for the inhomogeneous Vlasov–Navier–Stokes equations. Nonlinearity 28, 3309–3336 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  12. Cui, H., Wang, W., Yao, L.: Asymptotic analysis for 1D compressible Navier–Stokes–Vlasov equations. Commun. Pure Appl. Anal. 19(5), 2737–2750 (2020)

    Article  MathSciNet  Google Scholar 

  13. Domelevo, K., Roquejoffer, J.M.: Existence and stability of travelling waves solutions in a kinetic model of two phase flows. Commun. Partial Differ. Eqn. 24(1 & 2), 61–108 (1999)

    Article  MathSciNet  Google Scholar 

  14. Gamba, I., Yu, C.: Global weak solutions to compressible Navier–Stokes–Vlasov–Boltzmann systems for spray dynamics. J. Math. Fluid Mech. 22(4), Paper No. 45 (2020)

  15. Gemci, T., Corcoran, T., Chigier, N.: A numerical and experimental study of spray dynamics in a simple throat model. Aerosol Sci. Technol. 36, 18–38 (2002)

    Article  ADS  Google Scholar 

  16. Glass, O., Han-Kwan, D., Moussa, A.: The Vlasov–Navier–Stokes system in a 2D pipe: existence and stability of regular equilibria. Arch. Ration. Mech. Anal. 230(2), 593–639 (2018)

    Article  MathSciNet  Google Scholar 

  17. Goudon, T., Jabin, P.-E., Vasseur, A.: Hydrodynamic limit for the Vlasov–Navier–Stokes equations, I: light particles regime. Indiana Univ. Math. J. 53(6), 1495–1515 (2004)

    Article  MathSciNet  Google Scholar 

  18. Goudon, T., Jabin, P.-E., Vasseur, A.: Hydrodynamic limit for the Vlasov–Navier–Stokes equations, II: fine particles regime. Indiana Univ. Math. J. 53(6), 1517–1536 (2004)

    Article  MathSciNet  Google Scholar 

  19. Guo, Y.: Singular solutions of the Vlasov–Maxwell system on a half line. Arch. Ration. Mech. Anal. 131, 241–304 (1995)

    Article  MathSciNet  Google Scholar 

  20. Hamdache, K.: Global existence and large time behaviour of solutions for the Vlasov–Stokes equations. Jpn. J. Ind. Appl. Math. 15(1), 51–74 (1998)

    Article  MathSciNet  Google Scholar 

  21. Han-Kwan, D., Miot, E., Moussa, A., Moyano, I.: Uniqueness of the solution to the 2D Vlasov–Navier–Stokes system. Rev. Mat. Iberoam. 36(1), 37–60 (2020)

    Article  MathSciNet  Google Scholar 

  22. Han-Kwan, D., Moussa, A., Moyano, I.: Large time behavior of the Vlasov–Navier–Stokes system on the torus. Arch. Ration. Mech. Anal. 236(3), 1273–1323 (2020)

    Article  MathSciNet  Google Scholar 

  23. Li, H., Shou, L.: Global well-posedness of one-dimensional compressible Navier–Stokes–Vlasov system. J. Differ. Eqn. 280, 841–890 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  24. Jiang, S.: On initial boundary value problems for a viscous heat-conducting one-dimensional real gas. J. Differ. Eqn. 110, 157–181 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  25. Kawohl, B.: Global existence of large solutions to initial boundary value problems for the equations of one-dimensional motion of viscous polytropic gases. J. Differ. Eqn. 58, 76–103 (1985)

    Article  ADS  Google Scholar 

  26. Kazhikhov, A.V., Shelukhin, V.V.: Unique global solution with respect to time of initial boundary value problems for one-dimensioanal equations of a viscous gas. J. Appl. Math. Mech. 41, 273–282 (1977)

    Article  MathSciNet  Google Scholar 

  27. Mellet, A., Vasseur, A.: Global weak solutions for a Vlasov–Fokker–Planck/Navier–Stokes system of equations. Math. Models Methods Appl. Sci. 17, 1039–1063 (2007)

    Article  MathSciNet  Google Scholar 

  28. Williams, F.A.: Spray combustion and atomization. Phys. Fluid 1, 541–555 (1958)

    Article  ADS  Google Scholar 

  29. Wang, D., Yu, C.: Global weak solution to the inhomogeneous Navier–Stokes–Vlasov equations. J. Differ. Eqn. 259(8), 3976–4008 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  30. Yao, L., Yu, C.: Existence of global weak solutions for the Navier–Stokes–Vlasov–Boltzmann equations. J. Differ. Eqn. 265(11), 5575–5603 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  31. Yu, C.: Global weak solution to the incompressible Navier–Stokes–Vlasov equations. J. Math. Pures Appl. 100(9), 275–293 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Peng Jiang’s research was supported by the NSF of Jiangsu Province (Grant No. BK20191296). In addition, the author would like to thank Dr. Wentao Cao for his useful suggestions which improve this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by A. V. Fursikov.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, P. Global Classical Solution to the Navier–Stokes–Vlasov Equations with Large Initial Data and Reflection Boundary Conditions. J. Math. Fluid Mech. 24, 2 (2022). https://doi.org/10.1007/s00021-021-00635-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-021-00635-6

Keywords

Mathematics Subject Classification

Navigation