Skip to main content
Log in

Clifford parallelism: old and new definitions, and their use

  • Published:
Journal of Geometry Aims and scope Submit manuscript

Abstract

Parallelity in the real elliptic 3-space was defined by W. K. Clifford in 1873 and by F. Klein in 1890; we compare the two concepts. A Clifford parallelism consists of all regular spreads of the real projective 3-space \({{\rm PG}(3,\mathbb{R})}\) whose (complex) focal lines (=directrices) form a regulus contained in an imaginary quadric (D1 = Klein’s definition). Our new access to the topic ‘Clifford parallelism’ is free of complexification and involves Klein’s correspondence λ of line geometry together with a bijective map γ from all regular spreads of \({{\rm PG}(3,\mathbb{R})}\) onto those lines of \({{\rm PG}(5,\mathbb{R})}\) having no common point with the Klein quadric; a regular parallelism P of \({{\rm PG}(3,\mathbb{R})}\) is Clifford, if the spreads of P are mapped by γ onto a plane of lines (D2 = planarity definition). We prove the equivalence of (D1) and (D2). Associated with γ is a simple dimension concept for regular parallelisms which allows us to say instead of (D2): the 2-dimensional regular parallelisms of \({{\rm PG}(3,\mathbb{R})}\) are Clifford (D3 = dimensionality definition). Submission of (D2) to λ−1 yields a complexification free definition of a Clifford parallelism which uses only elements of \({{\rm PG}(3,\mathbb{R})}\): A regular parallelism P is Clifford, if the union of any two distinct spreads of P is contained in a general linear complex of lines (D4 = line geometric definition). In order to see (D1) and (D2) simultaneously at work we discuss the following two examples using, at the one hand, complexification and (D1) and, at the other hand, (D2) under avoidance of complexification. Example 1. In the projectively extended real Euclidean 3-space a rotational regular spread with center o is submitted to the group of all rotations about o; we prove, that a Clifford parallelism is generated. Example 2. We determine the group \({Aut_e({\bf P}_{\bf C})}\) of all automorphic collineations and dualities of the Clifford parallelism P C and show \({Aut_e({\bf P}_{\bf C})\hspace{1.5mm} \cong ({\rm SO}_3\mathbb{R} \times {\rm SO}_3\mathbb{R})\rtimes \mathbb{Z}_2}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Betten D.: Nicht-desarguessche 4-dimensionale Ebenen. Arch. Math. 21, 100–102 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  2. Betten D., Riesinger R.: Topological parallelisms of the real projective 3-space. Result. Math. 47, 226–241 (2005)

    MathSciNet  MATH  Google Scholar 

  3. Betten D., Riesinger R.: Constructing topological parallelisms of PG\({(3,\mathbb{R})}\) via rotation of generalized line pencils. Adv. Geom. 8, 11–32 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Betten D., Riesinger R.: Generalized line stars and topological parallelisms of the real projective 3-space. J. Geom. 91, 1–20 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Betten D., Riesinger R.: Hyperflock determining line sets and totally regular parallelisms of \({{\rm PG}(3,\mathbb{R})}\). Mh. Math. 161, 43–58 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Betten D., Riesinger R.: Parallelisms of \({{\rm PG}(3,\mathbb{R})}\) composed of non-regular spreads. Aequationes Math. 81, 227–250 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Blunck A., Pasotti St., Pianta S.: Generalized Clifford parallelisms. Innov. Incidence Geom. 11, 197–212 (2010)

    MathSciNet  Google Scholar 

  8. Brauner H.: Geometrie projektiver Räume I. Bibliographisches Institut, Mannheim (1976)

    MATH  Google Scholar 

  9. Brauner H.: Geometrie projektiver Räume II. Bibliographisches Institut, Mannheim (1976)

    MATH  Google Scholar 

  10. Clifford W.K.: Preliminary sketch of biquaternions. Proc. Lond. Math. Soc. (1) 4, 381–395 (1873)

    Article  MathSciNet  MATH  Google Scholar 

  11. Giering O.: Vorlesungen über höhere Geometrie. Vieweg, Braunschweig-Wies-baden (1982)

    Book  MATH  Google Scholar 

  12. Grundhöfer T., Löwen R.: Linear topological geometries. In: Buekenhout, F. (eds) Handbook of incidence geometry., Elsevier, Amsterdam (1995)

    Google Scholar 

  13. Hirschfeld J.W.P.: Finite projective spaces of three dimensions. Clarendon Press, Oxford (1985)

    MATH  Google Scholar 

  14. Hughes D.R., Piper F.C.: Projective planes. Springer, New York (1973)

    MATH  Google Scholar 

  15. Johnson N.L.: Parallelisms of projective spaces. J. Geom. 76, 110–182 (2003)

    MathSciNet  MATH  Google Scholar 

  16. Johnson N.L.: Combinatorics of spreads and parallelisms. Pure and Applied Mathematics (Boca Raton), vol. 295. CRC Press, Boca Raton (2010)

    Book  Google Scholar 

  17. Karzel H., Kroll H.-J.: Eine inzidenzgeometrische Kennzeichnung projektiver kinematischer Räume. Arch. Math. (Basel) 26, 107–112 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  18. Karzel H., Kroll H.-J.: Geschichte der Geometrie seit Hilbert. Wiss. Buchges., Darmstadt (1988)

    MATH  Google Scholar 

  19. Karzel H., Kroll H.-J., Sörensen K.: Invariante Gruppenpartitionen und Doppelräume. J. Reine Angew. Math. 262/263, 153–157 (1973)

    Google Scholar 

  20. Karzel H., Kroll H.-J., Sörensen K.: Projektive Doppelräume. Arch. Math. (Basel) 25, 206–209 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kroll H.-J.: Bestimmung aller projektiven Doppelräume. Abh. Math Sem. Univ. Hamburg 44, 139–142 (1975)

    Article  MathSciNet  Google Scholar 

  22. Lenz H.: Vorlesungen über projektive Geometrie. Akad. Verlagsges. Geest & Portig, Leipzig (1965)

    Google Scholar 

  23. Pickert G.: Analytische Geometrie. 7. Auflage. Akad. Verlagsges. Geest & Portig, Leipzig (1976)

    Google Scholar 

  24. Pasotti St.: Regular parallelisms in kinematic spaces. Discrete Math. 310, 3120–3125 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pottmann H., Wallner J.: Computational Line Geometry. Springer, Berlin (2001)

    MATH  Google Scholar 

  26. Riesinger R.: Beispiele starrer, topologischer Faserungen des reellen projektiven 3-Raums. Geom. Dedicata 40, 145–163 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  27. Salzmann H.R., Betten D., Grundhöfer T., Hähl H., Löwen R., Stroppel M.: Compact projective planes. De Gruyter, Berlin (1995)

    Book  Google Scholar 

  28. Schaal H.: Lineare Algebra und Analytische Geometrie II. Vieweg, Braunschweig (1976)

    MATH  Google Scholar 

  29. Schaal H., Glässner E.: Lineare Algebra und Analytische Geometrie III. Vieweg, Braunschweig (1977)

    MATH  Google Scholar 

  30. Tyrrell J.A., Semple J.G.: Generalized Clifford parallelism. University Press, Cambridge (1971)

    MATH  Google Scholar 

  31. Veblen O., Young J.W.: Projective geometry I. Blaisdell Publishing company, New York (1946)

    Google Scholar 

  32. Veblen O., Young J.W.: Projective geometry II. Blaisdell Publishing company, New York (1946)

    Google Scholar 

  33. Weisstein, E.W.: “Rotation Matrix”. From MathWorld—A Wolfram Web Resource. http://mathworld.wolfram.com/RotationMatrix.html

  34. Wong Y.-C.: Clifford parallels in elliptic (2n−1)-spaces and isoclinic n-planes in Euclidean 2n-space. Bull. Am. Math. Soc. 66, 289–293 (1960)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Riesinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Betten, D., Riesinger, R. Clifford parallelism: old and new definitions, and their use. J. Geom. 103, 31–73 (2012). https://doi.org/10.1007/s00022-012-0118-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00022-012-0118-2

Mathematics Subject Classification (2010)

Keywords

Navigation