Skip to main content
Log in

The critical point equation and contact geometry

  • Published:
Journal of Geometry Aims and scope Submit manuscript

Abstract

In this paper, we consider the CPE conjecture in the frame-work of \({K}\)-contact manifold and \({(\kappa, \mu)}\)-contact manifold. First, we prove that a complete \({K}\)-contact metric satisfying the CPE is Einstein and is isometric to a unit sphere \({S^{2n+1}}\). Next, we prove that if a non-Sasakian \({ (\kappa, \mu) }\)-contact metric satisfies the CPE, then \({ M^{3} }\) is flat and for \({ n > 1 }\), \({ M^{2n+1} }\) is locally isometric to \({ E^{n+1} \times S^{n}(4)}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Besse A.: Einstein Manifolds. Springer, New York (2008)

    MATH  Google Scholar 

  2. Blair D.E.: Riemannian Geometry of Contact and Symplectic Manifolds. Birkhauser, Boston (2002)

    Book  MATH  Google Scholar 

  3. Barros A., Ribeiro E. Jr.: Critical point equation on four-dimensional compact manifolds. Math. Nachr. 287(14–15), 1618–1623 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Corvino J.: Scalar curvature deformations and a gluing construction for the Einstein constraint equations. Commun. Math. Phys. 214, 137–189 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hwang S.: Critical points of the total scalar curvature functionals on the space of metrics of constant scalar curvature. Manuscr. Math. 103, 135–142 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Myers S.B.: Connections between differential geometry and topology. Duke Math. J. 1, 376–391 (1935)

    Article  MathSciNet  MATH  Google Scholar 

  7. Neto B.L.: A note on critical point metrics of the total scalar curvature functional. J. Math. Anal. Appl. 424, 1544–1548 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Tanno S.: The topology of contact Riemannian manifolds. Ill. J. Math. 12, 700–717 (1968)

    MathSciNet  MATH  Google Scholar 

  9. Tashiro Y.: Complete Riemannian manifolds and some vector fields. Trans. Am. Math. Soc. 117, 251–275 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  10. Yun G., Hwang S., Chang J.: Total scalar curvature and harmonic curvature. Taiwan. J. Math. 18(5), 1439–1458 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amalendu Ghosh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, A., Patra, D.S. The critical point equation and contact geometry. J. Geom. 108, 185–194 (2017). https://doi.org/10.1007/s00022-016-0333-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00022-016-0333-3

Mathematics Subject Classification

Keywords

Navigation