Skip to main content
Log in

A universal linear algebraic model for conformal geometries

  • Published:
Journal of Geometry Aims and scope Submit manuscript

Abstract

This article describes an entirely algebraic construction for developing conformal geometries, which provide models for, among others, the Euclidean, spherical and hyperbolic geometries. On one hand, their relationship is usually shown analytically, through a framework comparing the measurement of distances and angles in Cayley–Klein geometries, including Lorentzian geometries, as done by F. Bachmann and later R. Struve. On the other hand, such a relationship may also be expressed in a purely linear algebraic manner, as explained by D. Hestens, H. Li and A. Rockwood. The model described in this article unifies these approaches via a generalization of Lie sphere geometry. Like the work of N. Wildberger, it is a purely algebraic construction, and as such it works over any field of odd characteristic. It is shown that measurement of distances and angles is an inherent property of the model that is easy to identify, and the possible models are classified over the real, complex and finite fields, and partially in characteristic 2, revealing a striking analogy between the real and finite geometries. This is an abbreviated version of a previous manuscript, with certain expository parts removed for the sake brevity. The original manuscript is available on the website arXiv, with more motivation, examples, properties. Several definitions and theorems can be extended to include the characteristic 2 case, which are also omitted here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bachmann, F.: Aufbau der Geometrie aus dem Spiegelungsbegriff. Springer, Heidelberg (1973)

    Book  Google Scholar 

  2. Benz, W.: Vorlesungen über Geometrie der Algebren. Springer, Heidelberg (1973)

    Book  Google Scholar 

  3. Chen, Y.: Der Satz von Miquel in der Möbius-Ebene. Math. Ann. 186(2), 81–100 (1970)

    Article  MathSciNet  Google Scholar 

  4. Fillmore, J.P., Springer, A.: New Euclidean theorems by the use of Laguerre transformations—some geometry of Minkowski (2 + 1)-space. J. Geom. 52(1–2), 74–90 (1995)

    Article  MathSciNet  Google Scholar 

  5. Fillmore, J.P., Springer, A.: Planar sections of the quadric of Lie cycles and their Euclidean interpretations. Geom. Dedicata 55(2), 175–193 (1995)

    Article  MathSciNet  Google Scholar 

  6. Fillmore, J.P., Springer, A.: Determining circles and spheres satisfying conditions which generalizes tangency. Preprint (2000)

  7. Hestens, D., Li, H., Rockwood, A.: A Unified Algebraic Framework for Classical Geometry. In: Sommer, G. (ed.) Geometric Computing with Clifford Algebra. Springer, Heidelberg (2010)

    Google Scholar 

  8. Horváth, Á.G.: Constructive curves in non-Euclidean planes. Stud. Univ. Žilina 28, 13–42 (2016)

    MATH  Google Scholar 

  9. Kitaoka, Y.: Arithmetic of Quadratic Forms. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  10. Klein, F.: Vorlesungen über höhere Geometrie. Springer, Berlin (1926)

    MATH  Google Scholar 

  11. Lie, S., Scheffers, G.: Geometrie der Berührungstransformationen. Taubner, Leipzig (1896)

    Google Scholar 

  12. Macdonald, A.: A survey of geometric algebra and geometric calculus. Adv. Appl. Clifford Algebras 27(1), 853–891 (2017)

    Article  MathSciNet  Google Scholar 

  13. Molnár, E.: A tükrözésfogalom abszolút geometriai alkalmazásai. CSc dissertation (1975)

  14. Molnár, E.: Kreisgeometrie und Konforme Interpretation des mehrdimensionalen metrischen Raumes. Period. Math. Hung. 10(4), 237–259 (1979)

    Article  MathSciNet  Google Scholar 

  15. Molnár, E.: Inversion auf der Idealebene der bachmannschen metrische Ebene. Acta Math. Acad. Sci. Hung. Tomus 37(4), 451–470 (1981)

    Article  Google Scholar 

  16. Molnár, E.: Constructions in the absolute plane—to the memory of Gyula Strommer. J. Geom. Graphics 20(1), 63–73 (2016)

    MathSciNet  MATH  Google Scholar 

  17. Onishchik, A.L., Sulanke, R.: Projective and Cayley–Klein Geometries. Springer, Berlin (2006)

    MATH  Google Scholar 

  18. Rigby, J.F.: The geometry of cycles, and generalized Laguerre inversions. In: The Coxeter Festschrift, The Geometric Vein, pp. 355–378 Davis, C., Grünbaum, B., Sherk, F. A. (eds.) Springer, New York (1981)

    Chapter  Google Scholar 

  19. Struve, R.: An axiomatic foundation of Cayley–Klein geometries. J. Geom. 107(2), 225–248 (2016)

    Article  MathSciNet  Google Scholar 

  20. Wildberger, N.J.: Affine and Projective Universal Geometry (2006). arXiv:math/0612499

  21. Wildberger, N.J.: Universal Hyperbolic Geometry I: Trigonometry Geom Dedicata 163(1), 215–274 (2013)

    Google Scholar 

  22. Yaglom, I.M.: Galilei’s Relativity Principle and Non-Euclidean Geometry. Nauka, Moscow (1969)

    Google Scholar 

  23. Yaglom, I.M.: A Simple Non-Euclidean Geometry and Its Physical Basis. Springer, Heidelberg (1979)

    MATH  Google Scholar 

  24. Yaglom, I.M.: On the circular transformation of Möbius, Laguerre, and Lie. In: The Geometric Vein, The Coxeter Festschrift, pp. 345–353 Davis, C., Grünbaum, B., Sherk, F. A. (eds.) Springer, New York (1981)

    Chapter  Google Scholar 

Download references

Acknowledgements

I would like to thank Ákos G. Horváth for encouraging me to write this article. He has given me thorough guidance and I am thankful for his time. Acknowledgements are due to András Hraskó who introduced me to Lie sphere geometry, and provided me with important references. Finally, I would like to thank Professor Emil Molnár for his comments and for providing some essential references, and the Budapest University of Technology and Economics for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Máté L. Juhász.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 267 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Juhász, M.L. A universal linear algebraic model for conformal geometries. J. Geom. 109, 48 (2018). https://doi.org/10.1007/s00022-018-0451-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00022-018-0451-1

Navigation