Skip to main content
Log in

Classification of large partial plane spreads in \({{\,\mathrm{PG}\,}}(6,2)\) and related combinatorial objects

  • Published:
Journal of Geometry Aims and scope Submit manuscript

Abstract

The partial plane spreads in \({{\,\mathrm{PG}\,}}(6,2)\) of maximum possible size 17 and of size 16 are classified. Based on this result, we obtain the classification of the following closely related combinatorial objects: vector space partitions of \({{\,\mathrm{PG}\,}}(6,2)\) of type \((3^{16} 4^1)\), binary \(3\times 4\) MRD codes of minimum rank distance 3, and subspace codes with the optimal parameters \((7,17,6)_2\) and \((7,34,5)_2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beutelspacher, A.: Partial spreads in finite projective spaces and partial designs. Math. Z. 145(3), 211–229 (1975)

    Article  MathSciNet  Google Scholar 

  2. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24(3–4), 235–265 (1997)

    Article  MathSciNet  Google Scholar 

  3. Braun, M., Kiermaier, M., Wassermann, A.: Computational methods in subspace designs. In: Greferath, M., Pavčević, M.O., Silberstein, N., Vázquez-Castro, M.A. (eds.) Network Coding and Subspace Designs, Signals and Communication Theory, pp. 213–244. Springer, Cham (2018)

    Chapter  Google Scholar 

  4. Braun, M., Kiermaier, M., Wassermann, A.: \(q\)-analogs of designs: subspace designs. In: Greferath, M., Pavčević, M.O., Silberstein, N., Vázquez-Castro, M.A. (eds.) Network Coding and Subspace Designs, Signals and Communication Theory, pp. 171–211. Springer, Cham (2018)

    Chapter  Google Scholar 

  5. de la Cruz, J., Kiermaier, M., Wassermann, A., Willems, W.: Algebraic structures of MRD codes. Adv. Math. Commun. 10(3), 499–510 (2016)

    Article  MathSciNet  Google Scholar 

  6. Delsarte, Ph: Bilinear forms over a finite field, with applications to coding theory. J. Combin. Theory Ser. A 25(3), 226–241 (1978)

    Article  MathSciNet  Google Scholar 

  7. Dodunekov, S, Simonis, J: Codes and projective multisets. Electron. J. Combin. 5, #R37 (1998)

  8. Eisfeld, J., Storme, L.: (Partial) \(t\)-spreads and minimal \(t\)-covers in finite projective spaces. Lecture notes, Ghent University (2000)

  9. El-Zanati, S., Heden, O., Seelinger, G., Sissokho, P., Spence, L., Vanden Eynden, C.: Partitions of the 8-dimensional vector space over GF(2). J. Combin. Des. 18(6), 462–474 (2010)

    Article  MathSciNet  Google Scholar 

  10. El-Zanati, S., Jordon, H., Seelinger, G., Sissokho, P., Spence, L.: The maximum size of a partial 3-spread in a finite vector space over GF(2). Des. Codes Cryptogr. 54(2), 101–107 (2010)

    Article  MathSciNet  Google Scholar 

  11. Etzion, T., Silberstein, N.: Codes and designs related to lifted MRD codes. IEEE Trans. Inf. Theory 59(2), 1004–1017 (2013)

    Article  MathSciNet  Google Scholar 

  12. Etzion, T., Storme, L.: Galois geometries and coding theory. Des. Codes Cryptogr. 78(1), 311–350 (2016)

    Article  MathSciNet  Google Scholar 

  13. Etzion, T., Vardy, A.: Error-correcting codes in projective spaces. IEEE Trans. Inf. Theory 57(2), 1165–1173 (2011)

    Article  MathSciNet  Google Scholar 

  14. Feulner, Thomas: The automorphism groups of linear codes and canonical representatives of their semilinear isometry classes. Adv. Math. Commun. 3(4), 363–383 (2009)

    Article  MathSciNet  Google Scholar 

  15. Feulner, T.: Canonical forms and automorphisms in the projective space (2013). arXiv:1305.1193

  16. Feulner, T.: Eine kanonische Form zur Darstellung äquivalenter Codes – Computergestützte Berechnung und ihre Anwendung in der Codierungstheorie, Kryptographie und Geometrie. PhD thesis, Universität Bayreuth (2013)

  17. Gabidulin, E.M.: Theory of codes with maximum rank distance. Probl. Inf. Transm. 21(1), 1–12 (1985)

    MathSciNet  MATH  Google Scholar 

  18. Gordon, N.A., Shaw, R., Soicher, L.H.: Classification of partial spreads in \(\text{PG}(4,2)\) (2004). www.maths.qmul.ac.uk/~leonard/partialspreads/PG42new.pdf

  19. Heden, O.: On the length of the tail of a vector space partition. Discrete Math. 309(21), 6169–6180 (2009)

    Article  MathSciNet  Google Scholar 

  20. Heden, O.: A survey of the different types of vector space partitions. Discrete Math. Algorithms Appl. 4(1), 1250001 (2012)

    Article  MathSciNet  Google Scholar 

  21. Heinlein, D.: New LMRD bounds for constant dimension codes and improved constructions (2018). arXiv:1801.04803

  22. Heinlein, D., Honold, T., Kiermaier, M., Kurz, S., Wassermann, A.: Classifying optimal binary subspace codes of length 8, constant dimension 4 and minimum distance 6. arXiv:1711.06624. https://doi.org/10.1007/s10623-018-0544-8. To appear in Des. Codes Cryptogr.

    Article  MathSciNet  Google Scholar 

  23. Heinlein, D., Kiermaier, M., Kurz, S., Wassermann, A.: Tables of subspace codes (2016). arXiv:1601.02864

  24. Heinlein, D., Kurz, S.: Coset construction for subspace codes. IEEE Trans. Inf. Theory 63(12), 7651–7660 (2017)

    Article  MathSciNet  Google Scholar 

  25. Heinlein, D., Kurz, S.: An upper bound for binary subspace codes of length \(8\), constant dimension 4 and minimum distance 6. Accepted paper at The Tenth International Workshop on Coding and Cryptography, Sept 18–22 2017, Saint-Petersburg (2017)

  26. Hirschfeld, J.W.P.: Projective Geometries Over Finite Fields, 2nd edn. Oxford Mathematical MonographsThe Clarendon Press, Oxford University Press, New York (1998)

    MATH  Google Scholar 

  27. Hitotumatu, H., Noshita, K.: A technique for implementing backtrack algorithms and its application. Inf. Process. Lett. 8(4), 174–175 (1979)

    Article  Google Scholar 

  28. Hong, S.J., Patel, A.M.: A general class of maximal codes for computer applications. IEEE Trans. Comput. C–21(12), 1322–1331 (1972)

    Article  MathSciNet  Google Scholar 

  29. Honold, T., Kiermaier, M., Kurz, S.: Optimal binary subspace codes of length \(6\), constant dimension \(3\) and minimum subspace distance \(4\). In: Kyureghyan, G., Mullen, G.L., Pott, A. (eds.) Topics in Finite Fields, Number 632 in Contemporary Mathematics, pp. 157–176. American Mathematical Society, Providence (2015)

    Google Scholar 

  30. Honold, T., Kiermaier, M., Kurz, S.: Constructions and bounds for mixed-dimension subspace codes. Adv. Math. Commun. 10(3), 649–682 (2016)

    Article  MathSciNet  Google Scholar 

  31. Honold, T., Kiermaier, M., Kurz, S.: Partial spreads and vector space partitions. In: Greferath, M., Pavčević, M.O., Silberstein, N., Vázquez-Castro, M.A. (eds.) Network Coding and Subspace Designs, Signals and Communication Theory, pp. 131–170. Springer, Cham (2018)

    Chapter  Google Scholar 

  32. Honold, T., Landjev, I.: Linear codes over finite chain rings. Electron. J. Combin. 7, #R11 (2000)

  33. Horlemann-Trautmann, A.-L., Marshall, K.: New criteria for MRD and Gabidulin codes and some rank-metric code constructions. Adv. Math. Commun. 11(3), 533–548 (2017)

    Article  MathSciNet  Google Scholar 

  34. Hua, L.-K.: A theorem on matrices over a sfield and its applications. Acta Math. Sinica 1, 109–163 (1951)

    MathSciNet  Google Scholar 

  35. Kaski, P., Pottonen, O.: Libexact user’s guide version 1.0. technical report 2008-1. Helsinki University of Technology (2008)

  36. Kiermaier, M., Laue, R.: Derived and residual subspace designs. Adv. Math. Commun. 9(1), 105–115 (2015)

    Article  MathSciNet  Google Scholar 

  37. Knuth, D.E.: Dancing links. In: Roscoe, A.W., Davies, J., Woodcock, J. (eds.) Millennial Perspectives in Computer Science, Cornerstones of Computing, pp. 187–214. Palgrave, Oxford (2000)

    Google Scholar 

  38. Kötter, R., Kschischang, F.R.: Coding for errors and erasures in random network coding. IEEE Trans. Inf. Theory 54(8), 3579–3591 (2008)

    Article  MathSciNet  Google Scholar 

  39. Kshevetskiy, A., Gabidulin, E.: The new construction of rank codes. In: Proceedings of the IEEE international symposium on information theory (ISIT), 2005, pp. 2105–2108 (2005)

  40. Kurz, Sascha: Improved upper bounds for partial spreads. Des. Codes Cryptogr. 85(1), 97–106 (2017)

    Article  MathSciNet  Google Scholar 

  41. Kurz, S.: Packing vector spaces into vector spaces. Australas. J. Combin. 68(1), 122–130 (2017)

    MathSciNet  MATH  Google Scholar 

  42. Liebhold, D., Nebe, Gabriele: Automorphism groups of Gabidulin-like codes. Arch. Math. 107(4), 355–366 (2016)

    Article  MathSciNet  Google Scholar 

  43. Mateva, Z.T., Topalova, S.T.: Line spreads of \(\text{ PG }(5,2)\). J. Combin. Des. 17(1), 90–102 (2009)

  44. Năstase, E., Sissokho, Papa: The maximum size of a partial spread in a finite projective space. J. Combin. Theory Ser. A 152, 353–362 (2017)

    Article  MathSciNet  Google Scholar 

  45. Niskanen, S., Östergård, P.R.J.: Cliquer user’s guide, version 1.0. technical report T48. Helsinki University of Technology (2003)

  46. Roth, Ron M.: Maximum-rank array codes and their application to crisscross error correction. IEEE Trans. Inf. Theory 37(2), 328–336 (1991)

    Article  MathSciNet  Google Scholar 

  47. Seelinger, G., Sissokho, P., Spence, L., Vanden Eynden, C.: Partitions of finite vector spaces over \(\text{ GF }(2)\) into subspaces of dimensions \(2\) and \(s\). Finite Fields Appl. 18(6), 1114–1132 (2012)

  48. Segre, B.: Teoria di Galois, fibrazioni proiettive e geometrie non desarguesiane. Ann. Math. Pura Appl. (4) 64(1), 1–76 (1964)

    Article  MathSciNet  Google Scholar 

  49. Shaw, R.: Subsets of \(\text{ PG }(n,2)\) and maximal partial spreads in \(\text{ PG }(4,2)\). Des. Codes Cryptogr. 21(1–3), 209–222 (2000)

  50. Sheekey, J.: A new family of linear maximum rank distance codes. Adv. Math. Commun. 10(3), 475–488 (2016)

    Article  MathSciNet  Google Scholar 

  51. Silva, D., Kschischang, F.R., Kötter, R.: A rank-metric approach to error control in random network coding. IEEE Trans. Inf. Theory 54(9), 3951–3967 (2008)

    Article  MathSciNet  Google Scholar 

  52. Wan, Z.-X.: A proof of the automorphisms of linear groups over a sfield of characteristic 2. Sci. Sinica 11, 1183–1194 (1962)

    MathSciNet  MATH  Google Scholar 

  53. Wan, Z.-X.: Geometry of Matrices. World Scientific, Singapore (1996)

    Book  Google Scholar 

Download references

Acknowledgements

We thank the anonymous referees for their suggestions and careful reading. The authors would like to acknowledge the financial support provided by COST—European Cooperation in Science and Technology. The first author was also supported by the National Natural Science Foundation of China under Grant 61571006. The second and the third author are members of the Action IC1104 Random Network Coding and Designs over GF(q). The third author was supported in part by the Grant KU 2430/3-1—Integer Linear Programming Models for Subspace Codes and Finite Geometry from the German Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Kiermaier.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Dedicated to Helmut Karzel on the occasion of his 90th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Honold, T., Kiermaier, M. & Kurz, S. Classification of large partial plane spreads in \({{\,\mathrm{PG}\,}}(6,2)\) and related combinatorial objects. J. Geom. 110, 5 (2019). https://doi.org/10.1007/s00022-018-0459-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00022-018-0459-6

Mathematics Subject Classification

Navigation