Skip to main content
Log in

The geometry of Gauss map and shape operator in simply isotropic and pseudo-isotropic spaces

  • Published:
Journal of Geometry Aims and scope Submit manuscript

Abstract

In this work, we are interested in the differential geometry of surfaces in simply isotropic \({\mathbb {I}}^3\) and pseudo-isotropic \({\mathbb {I}}_{\mathrm {p}}^3\) spaces, which consists of the study of \({\mathbb {R}}^3\) equipped with a degenerate metric such as \(\mathrm {d}s^2=\mathrm {d}x^2\pm \mathrm {d}y^2\). The investigation is based on previous results in the simply isotropic space (Pavković in Glas Mat Ser III 15:149–152, 1980; Rad JAZU 450:129–137, 1990), which point to the possibility of introducing an isotropic Gauss map taking values on a unit sphere of parabolic type and of defining a shape operator from it, whose determinant and trace give the known relative Gaussian and mean curvatures, respectively. Based on the isotropic Gauss map, a new notion of connection is also introduced, the relative connection (r-connection, for short). We show that the new curvature tensor in both \({\mathbb {I}}^3\) and \({\mathbb {I}}_{\mathrm {p}}^3\) does not vanish identically and is directly related to the relative Gaussian curvature. We also compute the Gauss and Codazzi–Mainardi equations for the r-connection and show that r-geodesics on spheres of parabolic type are obtained via intersections with planes passing through their center (focus). Finally, we show that admissible pseudo-isotropic surfaces are timelike and that their shape operator may fail to be diagonalizable, in analogy to Lorentzian geometry. We also prove that the only totally umbilical surfaces in \({\mathbb {I}}_{\mathrm {p}}^3\) are planes and spheres of parabolic type and that, in contrast to the r-connection, the curvature tensor associated with the isotropic Levi-Civita connection vanishes identically for any pseudo-isotropic surface, as also happens in simply isotropic space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. The index z is here to emphasize that z is the isotropic (degenerate) direction.

  2. Observe that the center P is not uniquely defined since any other point Q with the same top view as P, i.e., \({\tilde{Q}}={\tilde{P}}\), is also a center.

  3. Indeed, if \((x^*,y^*,z^*)\in \varPi _{a,b}\cap S\), then from \(-ax^*-bx^*=p/2-[(x^*)^2+(y^*)^2]/2p\) we find \((x^*-ap)^2+(y^*-bp)^2=p^2(1+a^2+b^2)\).

  4. Indeed, if \((x^*,y^*,z^*)\in \varPi _{a,b}\cap S\), then from \(-ax^*+bx^*=p/2-[(x^*)^2-(y^*)^2]/2p\) we find \((x^*-ap)^2-(y^*-bp)^2=p^2(1+a^2-b^2)\).

References

  1. Aydin, M.E.: Constant curvature surfaces in a pseudo-isotropic space. Tamkang J. Math. 49, 221–233 (2018)

    Article  MathSciNet  Google Scholar 

  2. Aydin, M.E., Ergut, M.: Isotropic geometry of graph surfaces associated with product production functions in economics. Tamkang J. Math. 47, 433–443 (2016)

    Article  MathSciNet  Google Scholar 

  3. Aydin, M.E., Ergut, M.: Affine translation surfaces in the isotropic 3-space. Int. Electron. J. Geom. 10, 21–30 (2017)

    MathSciNet  MATH  Google Scholar 

  4. Aydin, M.E., Mihai, A.: Ruled surfaces generated by elliptic cylindrical curves in the isotropic space. Georgian Math. J. (2017). https://doi.org/10.1515/gmj-2017-0044

  5. Brauner, H.: Geometrie des zweifach isotropen Raumes. I. Bewegungen und kugeltreue Transformationen. J. Reine Angew. Math 224, 118–146 (1966)

    MathSciNet  MATH  Google Scholar 

  6. Chen, B.Y., Decu, S., Verstraelen, L.: Notes on isotropic geometry of production models. Kragujevac J. Math. 38, 23–33 (2014)

    Article  MathSciNet  Google Scholar 

  7. Da Silva, L.C.B.: Rotation minimizing frames and spherical curves in simply isotropic and pseudo-isotropic 3-spaces (To appear in Tamkang J. Math.). arXiv:1707.06321

  8. Giering, O.: Vorlesungen über höhere Geometrie. Vieweg, Wiesbaden (1982)

    Book  Google Scholar 

  9. Husty, M., Röschel, O.: On a particular class of cyclides in isotropic respectively pseudoisotropic space. Colloquia Math. Soc. Janos Bolayai 46, 531–557 (1984)

    MathSciNet  MATH  Google Scholar 

  10. Koenderink, J., van Doorn, A.: Image processing done right. Comput Vis ECCV 2002, 158–172 (2002)

    MATH  Google Scholar 

  11. Lense, J.: Über isotrope Mannigfaltigkeiten. Math. Ann. 116, 297–309 (1939)

    Article  MathSciNet  Google Scholar 

  12. Liu, H., Yu, Y.: Affine translation surfaces in Euclidean 3-space. Proc. Jpn Acad., Ser. A 89, 111–113 (2013)

    Article  MathSciNet  Google Scholar 

  13. López, R.: Differential geometry of curves and surfaces in Lorentz-Minkowski space. Int. Electron. J. Geom. 7, 44–107 (2015)

    MathSciNet  MATH  Google Scholar 

  14. Mészáros, F.: Klassifikationstheorie der verallgemeinerten Zykliden 4. Ordnung in pseudoisotropen Raum. Math. Pannonica 18, 299–323 (2007)

  15. Pavković, B.: An interpretation of the relative curvatures for surfaces in the isotropic space. Glas. Mat. Ser. III 15, 149–152 (1980)

  16. Pavković, B.: Relative differential geometry of surfaces in isotropic space. Rad JAZU 450, 129–137 (1990)

    MathSciNet  MATH  Google Scholar 

  17. Pottmann, H., Grohs, P., Mitra, N.J.: Laguerre minimal surfaces, isotropic geometry and linear elasticity. Adv. Comput. Math. 31, 391–419 (2009)

    Article  MathSciNet  Google Scholar 

  18. Pottmann, H., Opitz, K.: Curvature analysis and visualization for functions defined on Euclidean spaces or surfaces. Comput. Aided Geom. Des. 11, 655–674 (1994)

    Article  MathSciNet  Google Scholar 

  19. Sachs, H.: Ebene Isotrope Geometrie. Vieweg, Braunschweig/Wiesbaden (1987)

    Book  Google Scholar 

  20. Sachs, H.: Parabolische Schiebzykliden des einfach isotropen Raumes. Geom. Dedicata 31, 301–320 (1989)

    Article  MathSciNet  Google Scholar 

  21. Sachs, H.: Isotrope Geometrie des Raumes. Vieweg, Braunschweig/Wiesbaden (1990)

    Book  Google Scholar 

  22. Strubecker, K.: Beiträge zur Geometrie des isotropen Raumes. J. Reine Angew. Math. 178, 135–173 (1938)

    MathSciNet  MATH  Google Scholar 

  23. Strubecker, K.: Die Geometrie des isotropen Raumes und einige ihrer Anwendungen. Jahresber. Dtsch. Math.-Ver. 48, 236–257 (1938)

    MATH  Google Scholar 

  24. Strubecker, K.: Differentialgeometrie des isotropen Raumes, I. Theorie der Raumkurven. Sitzungsber. Akad. Wiss. Wien. Math.-Naturw. Kl., IIa 150, 1–53 (1941)

  25. Strubecker, K.: Differentialgeometrie des isotropen Raumes, II. Die Flächen konstanter Relativkrümmung \(K=rt - s^{2}\). Math. Z 47, 743–777 (1942)

  26. Strubecker, K.: Differentialgeometrie des isotropen Raumes. III. Flächentheorie. Math. Z. 48, 369–427 (1942)

    Article  MathSciNet  Google Scholar 

  27. Vogel, W.O.: Über lineare Zusammenhänge in singulären Riemannschen Räumen. Arch. Math. 16, 106–116 (1965)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank M. E. Aydin (Firat University) for useful discussions and the Departamento de Matemática, Universidade Federal de Pernambuco (Recife, Brazil), where this research initiated when da Silva was a temporary lecturer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz C. B. da Silva.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, L.C.B. The geometry of Gauss map and shape operator in simply isotropic and pseudo-isotropic spaces. J. Geom. 110, 31 (2019). https://doi.org/10.1007/s00022-019-0488-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00022-019-0488-9

Keywords

Mathematics Subject Classification

Navigation