Skip to main content
Log in

Radial expansion preserves hyperbolic convexity and radial contraction preserves spherical convexity

  • Published:
Journal of Geometry Aims and scope Submit manuscript

Abstract

On a flat plane, convexity of a set is preserved by both radial expansion and contraction of the set about any point inside it. Using the Poincaré disk model of hyperbolic geometry, we prove that radial expansion of a hyperbolic convex set about a point inside it always preserves hyperbolic convexity. Using stereographic projection of a sphere, we prove that radial contraction of a spherical convex set about a point inside it, such that the initial set is contained in the closed hemisphere centred at that point, always preserves spherical convexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Beardon, A.F.: The Geometry of Discrete Groups. Springer, New York (1982)

    Google Scholar 

  2. Beardon, A.F., Minda, D.: The hyperbolic metric and geometric function theory. In: Ponnusamy, S., Sugawa, T., Vuorinen, M. (eds.) Quasiconformal Mappings and their Applications, pp. 9–56. Narosa Publishing House, New Delhi (2007)

    MATH  Google Scholar 

  3. Ma, W., Minda, D.: Geometric properties of hyperbolic geodesics. In : Proceedings of the International Workshop on Quasiconformal Mappings and their Applications (2007)

Download references

Acknowledgements

We would like to thank M. Xiao for several useful discussions that helped in defining scaling transformations in the Poincaré disk. We also thank the anonymous referee for generous comments that greatly improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhruv Kohli.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Lemma 1

Let \(f(x) = \tanh ^{-1}\left( \frac{1}{k_1\coth (u_1x) + k_2\coth (u_2x)}\right) \). If \(k_1,k_2 > 0,k_1 + k_2 \geqslant 1\) and \(u_1,u_2 > 0\), then f(x) is concave, that is, \(f''(x) \leqslant 0\) for all \(x > 0\).

Proof

For convenience, denote \(p_i \equiv \coth (u_ix)\). Note that \(p_i \geqslant 1\) for all \(x \geqslant 0\) and \(p_i' \equiv u_i(1-p_i^2)\). Then

$$\begin{aligned} f'(x)&= \frac{f_1(x)}{f_2(x)}, \end{aligned}$$

where

$$\begin{aligned} f_1(x)&= k_1u_1(p_1^2-1) + k_2u_2(p_2^2-1),\\ f_2(x)&= (k_1p_1 + k_2p_2)^2-1. \end{aligned}$$

Note that \(f_1(x), f_2(x) > 0\) for all \(x > 0\). Next,

$$\begin{aligned} f''(x)&= \frac{f_1'(x)f_2(x)-f_1(x)f_2'(x)}{f_2(x)^2}, \end{aligned}$$

where

$$\begin{aligned} f_1'(x)&= -2(k_1u_1^2p_1(p_1^2-1) + k_2u_2^2p_2(p_2^2-1)),\\ f_2'(x)&= -2(k_1p_1+k_2p_2)f_1(x). \end{aligned}$$

Note that \(f_1'(x), f_2'(x) \leqslant 0\) for all \(x > 0\). The denominator \(f_2(x)^2\) is non-negative. We show that the numerator \(f_1'(x)f_2(x)-f_1(x)f_2'(x)\) is non-positive. Using the Cauchy-Schwarz inequality, we have

$$\begin{aligned} f_1(x)^2&= \left( u_1\sqrt{k_1p_1(p_1^2-1)} \cdot \sqrt{k_1(p_1 - p_1^{-1})} + u_2\sqrt{k_2p_2(p_2^2-1)}\cdot \sqrt{k_2(p_2-p_2^{-1})}\right) ^2\\&\leqslant (k_1u_1^2p_1(p_1^2-1) + k_2u_2^2p_2(p_2^2-1))(k_1(p_1-p_1^{-1})+k_2(p_2-p_2^{-1}))\\&= -\frac{f_1'(x)}{2}(k_1(p_1-p_1^{-1})+k_2(p_2-p_2^{-1})). \end{aligned}$$

Substituting the above inequality in \(f_1'(x)f_2(x)-f_1(x)f_2'(x)\), we get

$$\begin{aligned}&f_1'(x)f_2(x)-f_1(x)f_2'(x)\nonumber \\&\ \ = f_1'(x)f_2(x)+2(k_1p_1+k_2p_2)f_1(x)^2 \nonumber \\&\ \ \leqslant f_1'(x)(f_2(x)-(k_1p_1+k_2p_2)(k_1(p_1-p_1^{-1})+k_2(p_2-p_2^{-1}))) \nonumber \\&\ \ = f_1'(x)((k_1p_1+k_2p_2)^2 - 1 - (k_1p_1+k_2p_2)(k_1(p_1-p_1^{-1})+k_2(p_2-p_2^{-1}))) \nonumber \\&\ \ = f_1'(x)(k_1^2+k_2^2+k_1k_2(p_1p_2^{-1}+p_2p_1^{-1})- 1) \nonumber \\&\ \ \leqslant f_1'(x)((k_1+k_2)^2- 1)\nonumber \\&\ \ \leqslant 0. \end{aligned}$$
(19)

Inequality (19) follows from the facts that \(f_1'(x) \leqslant 0\) and \(p_1p_2^{-1}+p_2p_1^{-1} \geqslant 2\) for all \(x > 0\). The last inequality follows from \(f_1'(x) \leqslant 0\) and \((k_1+k_2)^2 \geqslant 1\). \(\square \)

Lemma 2

Let \(f(x) = \tan ^{-1}\left( \frac{1}{k_1\cot (u_1x) + k_2\cot (u_2x)}\right) \). If \(k_1,k_2 > 0, k_1+k_2\geqslant 1\), and \(u_1,u_2 > 0\), then f(x) is convex, that is, \(f''(x) \geqslant 0\) for all \(x \in (0,x^*]\) where \(x^* = \frac{\pi }{2}\min (u_1^{-1},u_2^{-1})\).

Proof

For convenience, denote \(p_i \equiv \cot (u_ix)\). Note that \(p_i \geqslant 0\) for all \(x \in (0,x^*]\) and \(p_i' \equiv -u_i(1+p_i^2)\). Then

$$\begin{aligned} f'(x)&= \frac{f_1(x)}{f_2(x)}, \end{aligned}$$

where,

$$\begin{aligned} f_1(x)&= k_1u_1(1+p_1^2) + k_2u_2(1+p_2^2), \\ f_2(x)&= (k_1p_1 + k_2p_2)^2+1. \end{aligned}$$

Note that \(f_1(x), f_2(x) > 0\) for all \(x \in (0,x^*]\). Next,

$$\begin{aligned} f''(x)&= \frac{f_1'(x)f_2(x) - f_1(x)f_2'(x)}{f_2(x)^2}, \end{aligned}$$

where

$$\begin{aligned} f_1'(x)&= -2\left( k_1u_1^2p_1(1+p_1^2) + k_2u_2^2p_2(1+p_2^2)\right) , \nonumber \\ f_2'(x)&= -2(k_1p_1+k_2p_2)f_1(x). \end{aligned}$$
(20)

Note that \(f_1'(x), f_2'(x) \leqslant 0\) for all \(x \in (0,x^*]\). The denominator \(f_2(x)^2\) is positive, so we will show that the numerator \(f_1'(x)f_2(x) - f_1(x)f_2'(x)\) is also positive for all \(x \in (0,x^*]\). First we show that

$$\begin{aligned} f_1'(x)\left( k_1\sqrt{p_1^2+1} + k_2\sqrt{p_2^2+1}\right) ^2 - f_1(x)f_2'(x) \geqslant 0. \end{aligned}$$
(21)

Using the Cauchy-Schwarz inequality, we have

$$\begin{aligned}&\left( k_1\sqrt{p_1^2+1} + k_2\sqrt{p_2^2+1}\right) ^2 \\&\ \ = \left( \sqrt{k_1u_1(p_1^2+1)}\cdot \sqrt{k_1u_1^{-1}} + \sqrt{k_2u_2(p_2^2+1)}\cdot \sqrt{k_2u_2^{-1}}\right) ^2 \\&\ \ \leqslant (k_1u_1(p_1^2+1) + k_2u_2(p_2^2+1))(k_1u_1^{-1}+k_2u_2^{-1}) \\&\ \ = f_1(x)(k_1u_1^{-1}+k_2u_2^{-1}). \end{aligned}$$

Using the above inequality and Eq. (20) in Eq. (21), we get

$$\begin{aligned}&f_1'(x)\left( k_1\sqrt{p_1^2+1} + k_2\sqrt{p_2^2+1}\right) ^2 - f_1(x)f_2'(x)\nonumber \\&\ \ \geqslant f_1'(x)f_1(x)(k_1u_1^{-1}+k_2u_2^{-1}) - f_1(x)f_2'(x) \end{aligned}$$
(22)
$$\begin{aligned}&\ \ = f_1'(x)f_1(x)(k_1u_1^{-1}+k_2u_2^{-1}) + 2(k_1p_1+k_2p_2)f_1(x)^2\nonumber \\&\ \ = f_1(x)(f_1'(x)(k_1u_1^{-1}+k_2u_2^{-1}) + 2(k_1p_1+k_2p_2)f_1(x))\nonumber \\&\ \ = 2f_1(x)\left[ \frac{k_1k_2}{u_1u_2}\left( u_1p_1-u_2p_2\right) \left( u_2^2(1+p_2^2) - u_1^2(1+p_1^2)\right) \right] \nonumber \\&\ \ \geqslant 0 \end{aligned}$$
(23)

as required. We used the fact that \(f_1'(x) \leqslant 0\) to obtain (22). Equation (23) follows by substitution. Since \(x \in (0,x^*]\), we have \(u_ix \leqslant \pi /2\). Also, note that \(f_1(x),k_1,k_2,u_1,u_2 > 0\). Then the last inequality follows from the fact that \(\alpha \cot (k\alpha )\) is decreasing in \(\alpha \) and \(\alpha ^2(1+\cot (k\alpha )^2)\) is increasing in \(\alpha \) for all \(\alpha \) such that \(\alpha > 0\) and \(k\alpha \in (0,\pi /2]\), so that either both terms in the product \(\left( u_1p_1-u_2p_2\right) \left( u_2^2(1+p_2^2) - u_1^2(1+p_1^2)\right) \) are non-positive or both non-negative.

Finally, we substitute (21) in \(f_1'(x)f_2(x) - f_1(x)f_2'(x)\), to get

$$\begin{aligned}&f_1'(x)f_2(x) - f_1(x)f_2'(x)\nonumber \\&\ \ \geqslant f_1'(x)f_2(x) - f_1'(x)\left( k_1\sqrt{p_1^2+1} + k_2\sqrt{p_2^2+1}\right) ^2\nonumber \\&\ \ = -f_1'(x)\left[ -f_2(x) + \left( k_1\sqrt{p_1^2+1} + k_2\sqrt{p_2^2+1}\right) ^2\right] \nonumber \\&\ \ = -f_1'(x)\left[ \left( k_1\sqrt{p_1^2+1}+k_2\sqrt{p_2^2+1}\right) ^2 - (k_1p_1+k_2p_2)^2-1\right] \nonumber \\&\ \ = -f_1'(x)\left[ k_1^2+k_2^2+2k_1k_2\left( \sqrt{p_1^2+1}\sqrt{p_2^2+1}-p_1p_2\right) - 1\right] \nonumber \\&\ \ \geqslant -f_1'(x)(k_1^2+k_2^2+2k_1k_2 - 1) \nonumber \\&\ \ = -f_1'(x)((k_1+k_2)^2 - 1)\nonumber \\&\ \ \geqslant 0. \end{aligned}$$
(24)

We used the fact that \(\sqrt{a^2+1}\sqrt{b^2+1}-ab \geqslant 1\) to obtain (24). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kohli, D., Rabin, J.M. Radial expansion preserves hyperbolic convexity and radial contraction preserves spherical convexity. J. Geom. 110, 40 (2019). https://doi.org/10.1007/s00022-019-0497-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00022-019-0497-8

Keywords

Navigation