Skip to main content
Log in

Rotational Weingarten surfaces in hyperbolic 3-space

  • Published:
Journal of Geometry Aims and scope Submit manuscript

Abstract

We study rotational Weingarten surfaces in the hyperbolic space \(\mathbb {H}^3(-1)\) with the principal curvatures \(\kappa \) and \(\lambda \) satisfying a certain functional relation \(\kappa = F(\lambda )\) for a given continuous function F. We determine profile curves of such surfaces parameterized in terms of the principal curvature \(\lambda \). Then we consider some special cases by taking \(F(\lambda ) = a\lambda + b\) and \(F(\lambda ) = a\lambda ^m\) for particular values of the constants ab, and m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barros, A., Silva, J., Sousa, P.: Rotational linear Weingarten surfaces into the Euclidean sphere. Israel J. Math. 192, 819–830 (2012)

    Article  MathSciNet  Google Scholar 

  2. Brito, F.B., Sa Earp, R.: On the structure of certain Weingarten surfaces with boundary a circle. Ann. Fac. Sci. Toulouse VI, 243–255 (1997)

    Article  MathSciNet  Google Scholar 

  3. Do Carmo, M., Dajczer, M.: Rotation hypersurfaces in spaces of constant curvature. Trans. AMS 277, 685–709 (1983)

    Article  MathSciNet  Google Scholar 

  4. Eisenhart, L.P.: A Treatise on the Differential Geometry of Curves and Surfaces. Schwarz Press, Melbourne (2007)

    Google Scholar 

  5. Gálvez, J.A., Martínez, A., Milán, F.: Linear Weingarten Surfaces in \(\mathbb{R}^3\). Monatsh. Math. 138, 133–144 (2003)

  6. Jimenez, M.R., Müller, C., Pottmann, H.: Discretizations of surfaces with constant ratio of principal curvatures. Discrete Comput. Geom. (2019). https://doi.org/10.1007/s00454-019-00098-7

    Article  Google Scholar 

  7. Kühnel, W.: Differential Geometry, Curves—Surfaces—Manifolds. Amer. Math. Soc., Providence, R.I. (German edition: Differentialgeometrie, Wiesbaden, Vieweg) (2003)

  8. Kühnel, W., Steller, M.: On closed Weingarten surfaces. Monatsh. Math. 146, 113–126 (2005)

    Article  MathSciNet  Google Scholar 

  9. Leite, M.L.: Rotational hypersurfaces of space forms with constant scalar curvature. Manuscr. Math. 67, 285–304 (1990)

    Article  MathSciNet  Google Scholar 

  10. Li, H., Suh, Y.J., Wei, G.: Linear Weingarten hypersurfaces in a unit sphere. Bull. Korean Math. Soc. 46, 321–329 (2009)

    Article  MathSciNet  Google Scholar 

  11. López, R.: Linear Weingarten surfaces in Euclidean and hyperbolic space. Mat. Contemp. 35, 95–113 (2008)

    MathSciNet  MATH  Google Scholar 

  12. López, R.: On linear Weingarten surfaces. Int. J. Math. 19, 439–448 (2008)

    Article  MathSciNet  Google Scholar 

  13. López, R.: Rotational linear Weingarten surfaces of hyperbolic type. Israel J. Math. 167, 283–302 (2008)

    Article  MathSciNet  Google Scholar 

  14. López, R., Pámpano, A.: Classification of rotational surfaces in Euclidean space satisfying a linear relation between their principal curvatures. arXiv:1808.07566 (2018)

  15. Mladenov, I.M., Oprea, J.: The Mylar Balloon revisited. Am. Math. Month. 110, 761–784 (2003)

    Article  MathSciNet  Google Scholar 

  16. Mladenov, I.M., Oprea, J.: The Mylar Ballon: new viewpoints and generalizations. In: Eighth International Conference on Geometry, Integrability and Quantization, June 9–14, Varna, Bulgaria (2006)

  17. Mori, H.: Rotational hypersurfaces in \(\mathbb{S}^n\)and \(\mathbb{H}^n\)with constant scalar curvature. Yokohama Math. J. 39, 151–162 (1992)

  18. Papantoniou, B.: Classification of the surfaces of revolution whose principal curvatures are connected by the relation \(Ak_1 + Bk_2 =0\)where \(A\)or \(B\)is different from zero. Bull. Calcutta Math. Soc. 76, 49–56 (1984)

  19. Rosenberg, H., Sa Earp, R.: The geometry of properly embedded special surfaces in \(\mathbb{R}^3\), e.g., surfaces satisfying \(aH + bK = 1\), where \(a\)and \(b\)are positive. Duke Math. J. 73, 291–306 (1994)

  20. Sa Earp, R., Toubiana, E.: Symmetry of properly embedded special Weingarten surfaces in \(\mathbb{H}^3\). Trans. AMS 351, 4693–4711 (1999)

  21. Spivak, M.: A Comprehensive Introduction to Differential Geometry, vol. 4. Publish or Perish, Boston (1999)

    MATH  Google Scholar 

  22. Yoon, D.W.: Weingarten surfaces of revolution in 3-dimensional hyperbolic space. Demonstratio Mathematica XXXVIII, 917–922 (2005)

    MathSciNet  MATH  Google Scholar 

  23. Weingarten, J.: Ueber eine Klasse auf einander abwickelbarer Flächen. J. Reine Angew. Math. 59, 382–393 (1861)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank the referee for carefully reading the manuscript and giving constructive comments, which help to improve the quality of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uğur Dursun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dursun, U. Rotational Weingarten surfaces in hyperbolic 3-space. J. Geom. 111, 7 (2020). https://doi.org/10.1007/s00022-019-0519-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00022-019-0519-6

Mathematics Subject Classification

Keywords

Navigation