Skip to main content
Log in

Absolute isotropic geometry

  • Published:
Journal of Geometry Aims and scope Submit manuscript

Abstract

The term ‘absolute geometry’ was coined by János Bolyai to characterize the part of Euclidean geometry that does not depend on the parallel postulate. In the framework of Cayley–Klein geometries the parallel axiom characterizes three classical geometries, namely Euclidean, Galilean and Minkowskian planes. We study the part of Galilean geometry that does not depend on the parallel postulate (briefly called absolute isotropic geometry) and their models (isotropic planes). After an axiomatic foundation of absolute isotropic geometry, we develop the basic theory of isotropic planes, prove the theorem of Saccheri for the angle sum of a triangle, and construct models of the different types of planes (over fields and skew fields of characteristic \(\ne 2\)). Surprisingly, these models have counterparts in the theory of Hilbert planes. The article closes with a comparison between Hilbert planes and isotropic planes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We consider in this article only plane geometries.

  2. We follow the reflection-geometric approach of Hjelmslev [16] and Bachmann [3] and formulate axioms in group-theoretical terms (see Sect. 2).

  3. This consensus has been reached by the end of the first half of the 20th century, based on the work of Skolem, Hilbert and Ackermann, Gödel, and Tarski.

  4. That is, a sentence \(\varphi \) is a theorem of \(\mathcal {T}\) if and only if the translation of \(\varphi \) is a theorem of \(\mathcal {T'}\), and vice versa.

  5. This holds under mild hypotheses with respect to the axioms of \(\mathcal {T}\), which all axiom systems of this article satisfy (see [32]).

  6. The (Witt) index of a quadratic space (Vf) is defined to be the maximal dimension of a totally isotropic subspace of V/RadV (see [3, p. 311]).

  7. A group is linearly orderable if and only if there exists a partition into cones; see [28, Theorem 3.3].

  8. The continuity axiom implies the Archimedean axiom which Hilbert used in [13]. Neither of these axioms can be stated in first-order logic.

  9. There is no commonly agreed naming of Hilbert planes. We follow Bachmann [3] and Hessenberg and Diller [12].

  10. In the literature division rings are also called ‘distributive Veblen–Wedderburn systems’ (see Hughes and Piper [17]).

  11. \(\angle (a, a, a^{+}, a^{-})\) is a zero angle (whose interior \( a^{+} \cap a^{-}\) is void). Any two zero angles are congruent.

  12. The neighborhood is defined with respect to the order topology.

  13. In [10] the field K and the metric constant k are denoted by M respectively \(\kappa \).

  14. The axiom was introduced in R. Struve [30] for a characterization of the part of Euclidean geometry which satisfies the principle of duality.

  15. In other words, if A is a point, which is not incident with a line b then \(n = 0\) or \(n = 1\) or \(n = 2\) according as there are 0, 1 or at least 2 lines through A which are ‘parallel’ to b (i.e., which have no common point with b).

  16. A non-Legendrean Hilbert plane is locally elliptic, since it is a locally complete subplane of the associated elliptic ideal plane (see Bachmann [3, § 18,3]).

  17. This holds also for plane absolute geometry [3] and for Hjelmslev Allgemeine Kongruenz-lehre [16].

References

  1. Bachmann, F.: Zur Parallelenfrage. Abh. Math. Sem. Univ. Hamburg 27, 173–192 (1964)

    Article  MathSciNet  Google Scholar 

  2. Bachmann, F.: Modelle der ebenen absoluten Geometrie. J.-Ber. dtsch. Math.-Verein. 66, 152–170 (1964)

    MathSciNet  MATH  Google Scholar 

  3. Bachmann, F.: Aufbau der Geometrie aus dem Spiegelungsbegriff, 2nd edn. Springer, Heidelberg (1973)

    Book  Google Scholar 

  4. Bachmann, F.: Ebene Spiegelungsgeometrie. Eine Vorlesung über Hjelmslev-Gruppen. BI-Wissenschaftsverlag, Mannheim (1989)

    MATH  Google Scholar 

  5. Behnke, H., Bachmann, F., et al.: Fundamentals of Mathematics, vol. II. Geometry. MIT Press, London (1974)

    Google Scholar 

  6. Beutelspacher, A., Rosenbaum, U.: Projektive Geometrie, 2nd edn. Springer, Wiesbaden (2004)

    Book  Google Scholar 

  7. Dehn, M.: Die Legendreschen Sätze über die Winkelsumme im Dreieck. Math. Ann. 53, 404–439 (1900)

    Article  MathSciNet  Google Scholar 

  8. Dress, A.: Trägheitsstrukturen quadratischer Formen. Math. Ann. 157, 326–331 (1964)

    Article  MathSciNet  Google Scholar 

  9. Giering, O.: Vorlesungen über höhere Geometrie. Vieweg, Braunschweig (1982)

    Book  Google Scholar 

  10. Gröger, D., Sörensen, K.: Two remarks on ordering in absolute planes. J. Geom. 111, 6 (2020)

    Article  MathSciNet  Google Scholar 

  11. Hartshorne, R.: Geometry: Euclid and Beyond. Springer, Heidelberg (2000)

    Book  Google Scholar 

  12. Hessenberg, G., Diller, J.: Grundlagen der Geometrie, 2nd edn. Walter de Gruyter, Berlin (1967)

    MATH  Google Scholar 

  13. Hilbert, D.: Grundlagen der Geometrie. Leipzig, Teubner (1899)—translated by L. Unger, Open Court, La Salle, Ill., under the title: Foundations of Geometry. (1971)

  14. Hilbert, D.: Neue Begründung der Bolyai-Lobatschefskyschen Geometrie. Math. Ann. 57, 137–150 (1903)

    Article  MathSciNet  Google Scholar 

  15. Hjelmslev, J.: Neue Begründung der ebenen Geometrie. Math. Ann. 64, 449–474 (1907)

    Article  MathSciNet  Google Scholar 

  16. Hjelmslev, J.: Einleitung in die allgemeine Kongruenzlehre. Danske Vid. Selsk., mat-fys. Medd. 8, Nr. 11 (1929); 10, Nr. 1 (1929); 19, Nr. 12 (1942); 22, Nr. 6, Nr. 13 (1945); 25, Nr.10 (1949)

  17. Hughes, D.R., Piper, F.C.: Projective Planes. Springer, Heidelberg (1973)

    MATH  Google Scholar 

  18. O’Maera, O.T.: Introduction to Quadratic Forms. Springer, New York (1963)

    Book  Google Scholar 

  19. Pambuccian, V.: Axiomatizations of hyperbolic and absolute geometries. In: Prékopa, A., Molnár, E. (eds.) Non-Euclidean Geometries: Janos Bolyai Memorial Volume, pp. 119–153. Springer, New York (2006)

    Chapter  Google Scholar 

  20. Pejas, W.: Die Modelle des Hilbertschen Axiomensystems der absoluten Geometrie. Math. Ann. 14, 212–235 (1961)

    Article  MathSciNet  Google Scholar 

  21. Prieß-Crampe, S.: Angeordnete Strukturen: Gruppen, Körper, projektive Ebenen. Springer, Berlin (1983)

    Book  Google Scholar 

  22. Sachs, H.: Ebene isotrope Geometrie. Vieweg, Braunschweig (1987)

    Book  Google Scholar 

  23. Strubecker, K.: Geometrie in einer isotropen Ebene I–III. MNU 15, 297–306, 343–351, 385–394 (1962).

  24. Struve, H., Struve, R.: Hjelmslevgruppen, in denen sich die Punkte gegen Geraden austauschen lassen. Geom. Dedicata 13, 399–417 (1983)

    Article  MathSciNet  Google Scholar 

  25. Struve, H.: Ein spiegelungsgeometrischer Aufbau der Galileischen Geometrie. Beiträge zur Algebra und Geometrie 17, 197–211 (1984)

    MATH  Google Scholar 

  26. Struve, H., Struve, R.: Projective spaces with Cayley–Klein metrics. J. Geom. 81, 155–167 (2004)

    Article  MathSciNet  Google Scholar 

  27. Struve, H., Struve, R.: Ordered groups and ordered geometries. J. Geom. 105, 419–447 (2014)

    Article  MathSciNet  Google Scholar 

  28. Struve, R.: Ordered metric geometry. J. Geom. 106, 551–570 (2015)

    Article  MathSciNet  Google Scholar 

  29. Struve, R.: An axiomatic foundation of Cayley–Klein geometries. J. Geom. 107, 225–248 (2016)

    Article  MathSciNet  Google Scholar 

  30. Struve, R.: The principle of duality in Euclidean and in absolute geometry. J. Geom. 107, 707–717 (2016)

    Article  MathSciNet  Google Scholar 

  31. Struve, R., Struve, H.: The Thomsen–Bachmann correspondence in metric geometry I. J. Geom. 110, 9 (2019)

    Article  MathSciNet  Google Scholar 

  32. Struve, R., Struve, H.: The Thomsen–Bachmann correspondence in metric geometry II. J. Geom. 110, 14 (2019)

    Article  MathSciNet  Google Scholar 

  33. Struve, R.: Cyclic order: a geometric analysis. Beitr. Algebra Geom. 61, 647–669 (2020)

    Article  MathSciNet  Google Scholar 

  34. Wolff, H.: Minkowskische und absolute Geometrie I, II. Math. Ann. 171, 144–193 (1967)

    Article  MathSciNet  Google Scholar 

  35. Yaglom, I.M.: A Simple Non-Euclidean Geometry and Its Physical Basis. Springer, Heidelberg (1979)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Struve.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Struve, R., Struve, H. Absolute isotropic geometry. J. Geom. 112, 1 (2021). https://doi.org/10.1007/s00022-020-00558-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00022-020-00558-z

Keywords

Mathematics Subject Classification

Navigation