Skip to main content
Log in

Quantization of Conductance in Gapped Interacting Systems

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We provide a short proof of the quantization of the Hall conductance for gapped interacting quantum lattice systems on the two-dimensional torus. This is not new and should be seen as an adaptation of the proof of Hastings and Michalakis (Commun Math Phys 334:433–471, 2015), simplified by making the stronger assumption that the Hamiltonian remains gapped when threading the torus with fluxes. We argue why this assumption is very plausible. The conductance is given by Berry’s curvature and our key auxiliary result is that the curvature is asymptotically constant across the torus of fluxes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avron, J.E., Seiler, R.: Why is the Hall conductance quantized? http://web.math.princeton.edu/~aizenman/OpenProblems.iamp/9903.QHallCond.html

  2. Avron, J.E., Seiler, R.: Quantization of the Hall conductance for general, multiparticle Schrödinger Hamiltonians. Phys. Rev. Lett. 54(4), 259–262 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  3. Avron, J.E., Seiler, R., Simon, B.: Charge deficiency, charge transport and comparison of dimensions. Commun. Math. Phys. 159, 399–422 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bachmann, S., De Roeck, W., Fraas, M.: The adiabatic theorem and linear response theory for extended quantum systems. arXiv preprint arXiv:1705.02838 (2017)

  5. Bachmann, S., De Roeck, W., Fraas, M.: Adiabatic theorem for quantum spin systems. Phys. Rev. Lett. 119(6), 060201 (2017)

    Article  ADS  Google Scholar 

  6. Bachmann, S., Michalakis, S., Nachtergaele, S., Sims, R.: Automorphic equivalence within gapped phases of quantum lattice systems. Commun. Math. Phys. 309(3), 835–871 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Bravyi, S., Hastings, M.B.: A short proof of stability of topological order under local perturbations. Commun. Math. Phys. 307(3), 609–627 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Bru, J.B., de Siqueira Pedra, W.: Lieb-Robinson Bounds for Multi-Commutators and Applications to Response Theory. Springer Briefs in Mathematical Physics. Springer, Berlin (2017)

    Book  MATH  Google Scholar 

  9. De Roeck, W., Salmhofer, M.: Persistence of exponential decay and spectral gaps for interacting fermions. arXiv preprint arXiv:1712.00977 (2017)

  10. Elgart, A., Graf, G.M., Schenker, J.H.: Equality of the bulk and edge Hall conductances in a mobility gap. Commun. Math. Phys. 259, 185–221 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Fröhlich, J., Studer, U.M., Thiran, E.: Quantum theory of large systems of non-relativistic matter. Les Houches Lecture Notes. https://arxiv.org/pdf/cond-mat/9508062.pdf (1995)

  12. Giuliani, A., Mastropietro, V., Porta, M.: Universality of the Hall conductivity in interacting electron systems. Commun. Math. Phys. 349(3), 1107–1161 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Hastings, M.B.: Private communication (2017)

  14. Hastings, M.B.: The stability of free Fermi Hamiltonians. arXiv preprint arXiv:1706.02270v2 (2017)

  15. Hastings, M.B., Michalakis, S.: Quantization of Hall conductance for interacting electrons on a torus. Commun. Math. Phys. 334, 433–471 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Hastings, M.B., Wen, X.-G.: Quasiadiabatic continuation of quantum states: the stability of topological ground-state degeneracy and emergent gauge invariance. Phys. Rev. B 72(4), 045141 (2005)

    Article  ADS  Google Scholar 

  17. Kitaev, A.: Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2–111 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Laughlin, R.B.: Quantized Hall conductivity in two dimensions. Phys. Rev. B 23(10), 5632 (1981)

    Article  ADS  Google Scholar 

  19. Lieb, E.H., Robinson, D.W.: The finite group velocity of quantum spin systems. Commun. Math. Phys. 28(3), 251–257 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  20. Michalakis, S., Zwolak, J.P.: Stability of frustration-free Hamiltonians. Commun. Math. Phys. 322(2), 277–302 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Monaco, D., Teufel, S.: Adiabatic currents for interacting electrons on a lattice. arXiv preprint arXiv:1707.01852 (2017)

  22. Nachtergaele, B., Ogata, Y., Sims, R.: Propagation of correlations in quantum lattice systems. J. Stat. Phys. 124(1), 1–13 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Nachtergaele, B., Sims, R.: Lieb-Robinson bounds in quantum many-body physics. Contemp. Math. 529, 141–176 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nachtergaele, B., Sims, R., Young, A.: Lieb-Robinson bounds, the spectral flow, and stability of the spectral gap for lattice fermion systems. arXiv preprint arXiv:1705.08553v2 (2017)

  25. Niu, Q., Thouless, D.J.: Quantum Hall effect with realistic boundary conditions. Phys. Rev. B 35(5), 2188 (1987)

    Article  ADS  Google Scholar 

  26. Niu, Q., Thouless, D.J., Wu, Y.-S.: Quantized Hall conductance as a topological invariant. Phys. Rev. B 31(6), 3372 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  27. Thouless, D.J., Kohmoto, M., Nightingale, M.P., den Nijs, M.: Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49(6), 405–408 (1982)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank Y. Avron for his careful reading of the first version of this manuscript, and for his many comments which helped improve this article. WDR acknowledges the support of the Flemish Research Fund FWO under grant G076216N. AB, MF and WDR have been supported by the InterUniversity Attraction Pole phase VII/18 dynamics, geometry and statistical physics of the Belgian Science Policy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech De Roeck.

Additional information

Communicated by Vieri Mastropietro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bachmann, S., Bols, A., De Roeck, W. et al. Quantization of Conductance in Gapped Interacting Systems. Ann. Henri Poincaré 19, 695–708 (2018). https://doi.org/10.1007/s00023-018-0651-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-018-0651-0

Navigation