Skip to main content
Log in

Crustal Thickness of Iran Inferred from Converted Waves

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The Iranian plate is part of the Alpine-Himalayan orogenic belt, which has been formed by the continental collision between the Arabian and Eurasian plates. The present-day Iranian plate is characterized by diverse tectonic domains including mountain belts (e.g. Zagros and Alborz, Kopeh-Dagh) and oceanic plate subduction (e.g. Makran). Here we present the lateral variations of the Moho discontinuity beneath Iran using a detailed P receiver function study. Our results allow for more precise estimations of the crustal thickness and enable us to provide a detailed Moho depth map for all of Iran for the first time. We used the teleseismic events recorded from 1995 to 2011 at 77 national permanent stations (24 broadband and 53 short period stations). Our results show significant variations in the crustal thickness, which are related to the different geological features within Iran. In general, the average crustal thickness beneath Iran is about 40–45 km. A relatively thick crust of about 54 ± 2 km due to the shortening is observed beneath the Alborz mountain ranges. The crust beneath the Alborz zone shows a thickness changing from 47 ± 2 to 45 ± 2 km from west to east and reaches a thickness of about 50 ± 2 km beneath the Kopeh-Dagh mountain range. We find the thinnest crust of about 33 ± 2 km beneath the Makran subduction zone in southeast Iran showing a normal continental crust, which has not been influenced by collisional processes. The thickest crust (~66 ± 2 km) is locally observed beneath the Sanandaj-Sirjan Zone, which is considered the suture zone of the collision between the Arabian and Eurasian plates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

MZTF:

Main Zagros Thrust Fault

SSZ:

Sanandaj-Sirjan Zone

ZFTB:

Zagros Fold and Thrust Belt

UDMA:

Urumieh-Dokhtar Magmatic Arc

CIMC:

Central Iranian Micro-Continent

References

  • Abbassi, A., Nasrabadi, A., Tatar, M., Yaminifard, F., Abbassi, M., Hatzfeld, D. and Priestley, K. (2010), Crustal velocity structure in the southern edge of the Central Alborz (Iran), J. Geodyn., 49, 68–78.

  • Afsari, N., Sodoudi, F., Taghizadeh-Farahmand, F. and Ghassemi, M. R. (2011), Crustal structure of Northwest Zagros (Kermanshah) and Central Iran (Yazd and Isfahan) using teleseismic Ps converted phases, J. Seismology, 15:341–353. doi:10.1007/s10950-011-9227-x.

  • Ammon, C. J. (1990), On the nonuniqueness of receiver function inversions, J. Geophys. Res., 95, 2504–2510.

  • Angus, D. A., Wilson, D. C., Sandvol, E, Ni, J. F. (2006), Lithospheric structure of the Arabian and Eurasian collision zone in eastern Turkey from S-wave receiver functions. Geophys J. Int., 166:1335–1346. doi:10.1111/j.1365-246X.2006.03070.x.

  • Asudeh, I. (1982), Seismic structure of Iran from surface and body wave data, Geophys. J. R. Astr., 71, 715–730.

  • Azhari, S. M., Gheitanchi, M. R. and moeini, H. (2012), Crustal velocity model study beneath Shiraz seismic network using inversion of local earthquake travel times, 15th Iranian Geophysical Conference (IGC-15), Tehran University, Tehran, Iran.

  • Bassin, C., Laske, G. and Masters, G., 2000, The Current Limits of Resolution for Surface Wave Tomography in North America, EOS Trans AGU., 81, F897.

  • Beghoul, N., and Barazang M. (1989), Mapping High Pn Velocity Beneath the Colorado Plateau constrains uplift models, J. Geophys. Res., 94, 7083–7104, 1989.

  • Berberian, M., (1995), Master blind thrust faults hidden under the Zagros folds: active basement tectonics and surface morphotectonics, Tectonophysics,241, 193–224.

  • Berberian, M., and Yeats, R.S., (1999), Patters of historical earthquake rupture in the Iranian plateau, Bul. Seism. Soc. Am., 89, 120–139.

  • Bird, P. (1978), Finite element modeling of lithosphere deformation: the Zagros collision orogeny. Tectonophysics 50, 307–336.

  • Boulin, J. (1991), Structures in southwest Asia and evolution of the eastern Tethys, Tectonophysics, 196,211–268.

  • Dehgani, G. A. and Makris, J. (1984), The Gravity field and crustal structure of Iran, N. Jb. GeoL. Palaont Abh., 168, 215–229.

  • Dewey. J. F., Hemton, M. R., Kidd, W. S. F., Saroglu, F. and Sengor A. M. C. (1986), Shortening of continental lithosphere: The neotectonicsof eastern Anatolia, a young collision zone, in Collision Tectonics, edited by M. P. Coward and A. C. Ries, Geol. Soc. Spe. Publ., 19, 3–36.

  • Falcon, N.L. (1974), Southern Iran: Zagros mountains. Spec. Pub. Geol. Soc. Lond. 4, 199–211.

  • Hatzfeld, D., Tatar, M., Priestley, K. and Ghafory-Ashtyany, M. (2003), Seismological constraints on the crustal structure beneath the Zagros mountain belt (Iran), Geophysical Journal International, 155, 403–410.

  • Hessami, KH., Jamali, F., and Tabassi, H. (2003), Major Active Faults of Iran, International Institute of Earthquake Engineering and Seismology, Department of Seismotectonic, Seismology Research Center, Tehran, Iran.

  • Jackson, J. A., and McKenzi, D. P. (1984), Active tectonics of the Alpine-Himalayan belt between Western Turkey and Pakistan, Geophys. J. R. astr. Soc., 77, 185–264.

  • Jackson, J., Priestley, K., Allen, M., and Berberian, M. (2002), Active tectonics of the South Caspian Basin, Geophys. J. Int., 148(2), 214–245.

  • Javan Doloei, G. and Roberts, R. (2003), Crust and uppermost mantle structure of Tehran region from analysis of teleseismic P-waveform receiver functions, Tectonophysics, 364, 115–133.

  • Jiménez-Munt, I., Fern`andez, M., Saura, E., Verg´es, J., and Garcia-Castellanos, D. (2012), 3-D lithospheric structure and regional/residual Bouguer anomalies in the Arabia–Eurasia collision (Iran), Geophys. J. Int., 190, 1311–1324. doi: 10.1111/j.1365-246X.2012.05580.x.

  • Kind, R., Kosarev, G. L., and Petersen, N. V., (1995), Receiver functions at the stations of the German Regional Seismic Network (GRSN), Geophys. J. I., 121, 191–202.

  • Kumar, P., Yuan, X., Kumar, M.R., Kind, R., Li, X., and Chadha, R. K. (2007), The rapid drift of the Indian tectonic plate, Nature, 449:894–897. doi:10.1038/nature06214.

  • Mangino, S., and Priestley, K. (1998), The crustal structure of the southern Caspian region, Geophys. J. Int., 133:630–648.

  • Mohammadi, E., Sodoudi, F., Kind, R., Rezapour, M. (2013), Presence of a layered lithosphere beneath the Zagros collision zone, Tectonophysics, 608, 366–375. doi:10.1016/j.tecto. 2013.09.017.

  • Mohammadi, N., Sodoudi, F., Mohammadi, E., and Sadidkhouy, A. (2013), New constraints on lithospheric thickness of the Iranian Plateau using converted waves, J. Seismology, doi:10.1007/s10950-013-9359-2.

  • Mooney, W. D., Laske, G. and Masters, G., 1998, A Global crustal model at 5×5 degree, J. Geophys. Res., 103, 727–747.

  • Motaghi, K., Tatar, M., and Priestley, K. (2012), Crustal thickness variation across the northeast Iran continental collision zone from teleseismic converted waves, J. Seismol., 16:253–260, doi:10.1007/s10950-011-9267-2.

  • Motavalli-Anbaran, S. H., Zeyen, H., Brunet, M. F., and Ebrahimzadeh Ardestani, V. (2011), Crustal and lithospheric structure of the Alborz Mountains, Iran, and surrounding areas from integrated geophysical modeling, TECTONICS, VOL:30, doi:10.1029/2011TC002934.

  • Nasrabadi, A., Tatar, M. and Kaviani, A. (2011), Crustal Structure of Iran from Joint Inversion of Receiver Function and Phase Velocity Dispersion of Rayleigh Wave, Geosciences, No 82.

  • Paul, A., Kaviani, A., Hatzfeld, D., Vegne, J. and Mokhtari, M. (2006), Seismological evidence for crustal- scale thrusting in the Zagros mountain belt (Iran), Geophys J. Int., 166:227–237. doi:10.1111/j.1365-24x.2006.02920.x.

  • Paul, A., Hatzfeld, D., Kaviani, A., Tatar, M., and Pe´quegnat, C. (2010), Seismic imaging of the lithospheric structure of the Zagros mountain belt (Iran), Geol. Soc. London Special Publications, 330:5–18.

  • Radjaee, A.H., Rham, D., Mokhtari, M., Tatar, M., Priestley, K., and Hatzfeld, D. (2010), Variation of Moho depth in the Central part of Alborz Mountains, North of Iran, Geophys. J. Int., 181, 173–184. doi:10.1111/j.1365-246X.2010.04518.x.

  • Rajab-Baiki, F., Afsari, N., Taghizadeh-Farahmand, f. and Gheitanche, M. R. (2011), Variations of the Moho depth and Vp/Vs ratio beneath East Iran (Birjand) using P receiver function method, Iranian Journal of Geophysics, Vol. 5, No. 1.

  • Richards, J. P., Wilkinson, D., and Ullrich, T. (2006) Geology of the Sari Gunay Epithermal Gold Deposit, Northwest Iran, Economic Geology, 101(8), 1455–1496.

  • Shad Manaman, N., Shomali, H. (2010), Upper mantle S-velocity structure and Moho depth variations across Zagros belt, Arabian-Eurasian plate boundary. Phys Earth planet Inter., 180, 92–103.

  • Shad Manaman, N., Shomali, H., and Hemin, K. (2011), New constraints on upper-mantle Svelocity structure and crustal thickness of the Iranian plateau using partitioned waveform inversion, Geophys J Int 184: 247-267. doi:10.1111/j.1365-246X.2010.04822.x.

  • Snyder, D.B., and Barazangi, M. (1986), Deep crustal structure and flexture of the Arabian plate beneath the Zagros collisional mountain belt as inferred from gravity observation. Tectonics 5:361–373.

  • Sodoudi, F., Yuan, X., Kind, R., Heit, B., and Sadidkhouy, A. (2009), Evidence for a missing crustal root and a thin lithosphere beneath the central Alborz by receiver function studies, Geophys. J. Int., 177, 733–742. doi:10.1111/j.1365-246X.2009.04115.x.

  • Stammler, K. (1993), Seismichandler-programmable multichannel data handler for interactive and automatic processing of seismological analyses, Comput. Geosci., 19:135–140.

  • Stoneley, R. (1981), The geology of the Kuh-e Dalnesh area of Southern Iran, and its bearing on the evolution of Southern Tethys. J Geol Soc Lond 138:509–526.

  • Taghizadeh-Farahmand, F., Sodoudi, F., Afsari, N. and Ghassemi, M. R. (2010), Lithospheric structure of NW Iran from P and S receiver functions, J. Seismology, 14:823–836. doi:10.1007/s10950-010-9199-2.

  • Taghizadeh-Farahmand, F., Sodoudi, F., Afsari, N., and Mohamadi, N. (2013), Receiver function images from the Moho and the LAB beneath the Kopeh-Dagh (Northeast Iran), J. Seismology, Vol 17, No:3, doi:10.1007/s10950-013-9388-x.

  • Tatar, M. and Nasrabadi, A. (2013), Crustal thickness variations in the Zagros continental collision zone (Iran) from joint inversion of receiver functions and surface wave dispersion, J. Seismology, 17. doi:10.1007/s10950-013-9394-z.

  • Vernant, Ph., Nilforoushan, F., Hatzfeld, D., Abbassi, M. R., Vigny, C., Masson, F., Nakali, H., Martinod, J., Ashtiani, A., Bayer, R., Tavakoli, F. and Chery J., (2004), Presentday crustal deformation and plate kinematics in the Middle East contrained by GPS measurements in Iran and northern Oman.Geophys. J. Int. 157, 381–398.

  • Vernant, Ph. and Chéry, J., (2006), Mechanical modelling of oblique convergence in the Zagros, Iran, Geophys. J. Int., 165, 991–1002.

  • Vinnik, L. P., (1977), Detection of waves converted from P to SV in mantle, Phys. Earth Planet. Inter., 15, 39–45.

  • Wessel, P., and Smith, W. H. F. (1998), New, improved version of Generic Mapping Tools Released. EOS Trans Am Geophys Union 79:579.

  • Yamini-Fard, F., and Hatzfeld, D. (2008), Seismic Structure Beneath Zagros-Makran Transition Zone (Iran) from Teleseismic Study: Seismological Evidence for Underthrusting and Buckling of the Arabian Plate Beneath Central Iran, JSEE, Vol. 10, No. 1.

  • Yuan, X., Ni, J., Kind, R., Mechie, J., and Sandvol, E. (1997), Lithospheric and upper mantle structure of southern Tibet from a seismological passive source experiment. J Geophys Res 102 (27): 491–500.

  • Zamanian, H., Bayram-nejad, E., and Gheitanchi, M .R. (2012), Crustal Velocity Structure In Central of Iran Using Local Earthquakes, 15th Iranian Geophysical Conference (IGC-15), Tehran University, Tehran, Iran.

  • Zhu, L. and Kanamori, H. (2000), Moho depth variation in southern California from telesiesmic receiver, J. Geophys. Res., 105, 2969–2980.

  • Zore, E., Sandovl, E., Gurbuz, C., Turkelli, N., Seber, D., and Barazangi, M. (2003), The crustal structure of the East Anatolian Plateau (Turkey) from receiver functions, J. Geophys. Res., 30. doi:10.1029/2003GL018192.

Download references

Acknowledgments

Authors are grateful to the Iranian Seismological Center (ISC) and the International Institute of Earthquake Engineering and Seismology (IIEES) for providing the teleseismic waveforms. We would like to thank Brian Mitchell and three anonymous reviewers for their constructive comments. We would also thank Ivone Jiménez-Munt for providing the fault map. We used the software packages Seismic Handler (Stammler, 1993) for data processing and GMT (Wessel and Smith 1998) for plotting, respectively. This research was supported by the Islamic Azad University, Qom branch.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fataneh Taghizadeh-Farahmand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taghizadeh-Farahmand, F., Afsari, N. & Sodoudi, F. Crustal Thickness of Iran Inferred from Converted Waves. Pure Appl. Geophys. 172, 309–331 (2015). https://doi.org/10.1007/s00024-014-0901-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-014-0901-0

Keywords

Navigation