Skip to main content
Log in

Assessment of the Sensitivity to the Thermal Roughness Length in Noah and Noah-MP Land Surface Model Using WRF in an Arid Region

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Atmospheric models are known to underestimate land surface temperature and, by association, 2 m air temperature over dry arid regions during the day due to the treatment of the thermal roughness length also known as roughness length of heat. The thermal roughness length can be controlled by the Zilitinkevich parameter, known as Czil, which is a tunable parameter within the models. Three different scenarios with the WRF model are run to test the impact of the Czil parameter on the simulations using two land surface models: the Noah and Noah-MP models. In this study, a modified version of the Noah-MP model is tested, in which the Czil parameter, and, therefore, the thermal roughness length varies depending on the land cover and vegetation height. The model domain is over the United Arab Emirates (UAE) where the major land cover type is desert. The following configurations are tested: the Noah model with Czil = 0.1, Noah model with Czil = 0.5 and the Noah-MP model with Czil = 0.5 over desert. Results of 2 m air temperature are verified against three stations in the UAE. Mean gross error of the diurnal 2 m temperature was reduced by up to 1.48 and 1.54 °C in the 24 and 48 h forecasts, respectively. This reduced the cold bias in the model. This improvement in air temperature showed to improve the diurnal cycle of relative humidity at the three monitoring stations as well as the duration of the sea breeze in some cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abbs, D. J., & Physick, W. (1992). Sea-breeze observations and modelling: A review. Australian Meteorological Magazine, 41, 7–19.

    Google Scholar 

  • Ajjaji, R., Al-katheri, A. A., & Khaled, A. L. (2008). Evaluation of United Arab Emirates WRF two-way nested model on a set of thick coastal fog situations. United Nations: United Nations Development Programme, Air Force and Air Defense Meteorological Department.

    Google Scholar 

  • Bang, C.-H., Lee, J.-W., & Hong, S.-Y. (2008). Predictability experiments of fog and visibility in local airports over Korea using the WRF model. Journal of Korean Society for Atmospheric Environment, 24(E2), 92–101.

    Google Scholar 

  • Bartok, J., Bott, A., & Gera, M. (2012). Fog prediction for road traffic safety in a coastal desert region. Boundary Layer Meteorology, 145(3), 485–506.

    Article  Google Scholar 

  • Bartoková, I., Bott, A., Bartok, J., & Gera, M. (2015). Fog prediction for road traffic safety in a coastal desert region: Improvement of nowcasting skills by the machine-learning approach. Boundary Layer Meteorology, 157(3), 501–516.

    Article  Google Scholar 

  • Bastidas, L. A., Hogue, T. S., Sorooshian, S., Gupta, H. V., & Shuttleworth, W. J. (2006). Parameter sensitivity analysis for different complexity land surface models using multicriteria methods. Journal of Geophysical Research Atmospheres, 111, D20.

    Article  Google Scholar 

  • Braud, I., Noilhan, J., Bessemoulin, P., Mascart, P., Haverkamp, R., & Vauclin, M. (1993). Bare-ground surface heat and water exchanges under dry conditions: Observations and parameterization. Boundary Layer Meteorology, 66(1), 173–200.

    Article  Google Scholar 

  • Carslaw, D. C., & Ropkins, K. (2012). Openair—an R package for air quality data analysis. Environmental Modelling and Software, 27–28, 52–61. https://doi.org/10.1016/j.envsoft.2011.09.008.

    Article  Google Scholar 

  • Chaouch, N., Temimi, M., Weston, M., & Ghedira, H. (2017). Sensitivity of the meteorological model WRF-ARW to planetary boundary layer schemes during fog conditions in a coastal arid region. Atmospheric Research, 187, 106–127.

    Article  Google Scholar 

  • Chen, F., & Dudhia, J. (2001). Coupling an advanced land surface hydrology model with the Penn State NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Monthly Weather Review, 129(4), 569–585.

    Article  Google Scholar 

  • Chen, F., Janjić, Z., & Mitchell, K. (1997). Impact of atmospheric surface-layer parameterizations in the new land-surface Scheme of the NCEP mesoscale eta model. Boundary Layer Meteorology, 85, 391–421.

    Article  Google Scholar 

  • Chen, Y., Yang, K., He, J., Qin, J., Shi, J., Du, J., et al. (2011). Improving land surface temperature modeling for dry land of China. Journal of Geophysical Research Atmospheres, 116, D20.

    Article  Google Scholar 

  • Chen, Y., Yang, K., Zhou, D., Qin, J., & Guo, X. (2010). Improving the Noah land surface model in arid regions with an appropriate parameterization of the thermal roughness length. Journal of Hydrometeorology, 11(4), 995–1006.

    Article  Google Scholar 

  • Chen, F., & Zhang, Y. (2009). On the coupling strength between the land surface and the atmosphere: From viewpoint of surface exchange coefficients. Geophysical Research Letters, 36, 10.

    Google Scholar 

  • De Villiers, M. P., & Van Heerden, J. (2007). Fog at Abu Dhabi international airport. Weather, 62(8), 209–214.

    Article  Google Scholar 

  • Ek, M. B., Mitchell, K. E., Lin, Y., Rogers, E., Grunmann, P., Koren, V., et al. (2003). Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. Journal of Geophysical Research Atmospheres, 108, D22.

    Article  Google Scholar 

  • Fares, A., Temimi, M., Morgan, K., & Kelleners, T. J. (2013). In-situ and remote soil moisture sensing technologies for vadose zone hydrology. Vadose Zone Journal, 12(2), vzj2013.03.0058. https://doi.org/10.2136/vzj2013.03.0058.

    Article  Google Scholar 

  • Gultepe, I., Müller, M. D., & Boybeyi, Z. (2006). A new visibility parameterization for warm-fog applications in numerical weather prediction models. Journal of Applied Meteorology and Climatology, 45(11), 1469–1480. https://doi.org/10.1175/jam2423.1.

    Article  Google Scholar 

  • Gultepe, I., Pearson, G., Milbrandt, J. A., Hansen, B., Platnick, S., Taylor, P., et al. (2009). The fog remote sensing and modeling field project. Bulletin of the American Meteorological Society, 90(3), 341–360. https://doi.org/10.1175/2008bams2354.1.

    Article  Google Scholar 

  • Gultepe, I., Tardif, R., Michaelides, S. C., Cermak, J., Bott, A., Bendix, J., et al. (2007). Fog research: A review of past achievements and future perspectives. Pure and Applied Geophysics, 164(6), 1121–1159. https://doi.org/10.1007/s00024-007-0211-x.

    Article  Google Scholar 

  • Harris, I., Jones, P. D., Osborn, T. J., & Lister, D. H. (2014). Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. International Journal of Climatology, 34(3), 623–642. https://doi.org/10.1002/joc.3711.

    Article  Google Scholar 

  • Hogue, T. S., Bastidas, L. A., Gupta, H. V., & Sorooshian, S. (2006). Evaluating model performance and parameter behavior for varying levels of land surface model complexity. Water Resources Research, 42, 8.

    Article  Google Scholar 

  • Hogue, T. S., Bastidas, L., Gupta, H., Sorooshian, S., Mitchell, K., & Emmerich, W. (2005). Evaluation and transferability of the Noah land surface model in semiarid environments. Journal of Hydrometeorology, 6(1), 68–84.

    Article  Google Scholar 

  • Hong, S.-Y., Dudhia, J., & Chen, S.-H. (2004). A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Monthly Weather Review, 132(1), 103–120.

    Article  Google Scholar 

  • Huang, X., Wang, W., & Powers, J. (2008). A description of the advanced research WRF version 3. NCAR technical note, NCAR, BoulderSpeer M, Wiles P, Pepler A (2009).

  • Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., & Collins, W. D. (2008). Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res, 113, D13.

    Article  Google Scholar 

  • Kain, J. S. (2004). The Kain–Fritsch convective parameterization: An update. Journal of Applied Meteorology, 43(1), 170–181.

    Article  Google Scholar 

  • Kain, J. S., & Fritsch, J. M. (1990). A one-dimensional entraining/detraining plume model and its application in convective parameterization. Journal of the Atmospheric Sciences, 47(23), 2784–2802.

    Article  Google Scholar 

  • LeMone, M. A., Tewari, M., Chen, F., Alfieri, J. G., & Niyogi, D. (2008). Evaluation of the Noah land surface model using data from a fair-weather IHOP_2002 day with heterogeneous surface fluxes. Monthly Weather Review, 136(12), 4915–4941.

    Article  Google Scholar 

  • Liang, X., Wood, E. F., Lettenmaier, D. P., Lohmann, D., Boone, A., Chang, S., et al. (1998). The Project for Intercomparison of Land-surface Parameterization Schemes (PILPS) phase 2 (c) Red-Arkansas River basin experiment: 2. Spatial and temporal analysis of energy fluxes. Global and Planetary Change, 19(1), 137–159.

    Article  Google Scholar 

  • Mitchell, K., Ek, M., Wong, V., Lohmann, D., Koren, V., Schaake, J., et al. (2005) ‘Noah Land Surface Model (LSM) User’s Guide’ NCAR Research Application Laboratory (RAL). pp. 1–26.

  • Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., & Clough, S. A. (1997). Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. Journal of Geophysical Research Atmospheres, 102(D14), 16663–16682.

    Article  Google Scholar 

  • Niu, G. Y., Yang, Z. L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., et al. (2011). The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. Journal of Geophysical Research Atmospheres, 116(12), 1–19.

    Google Scholar 

  • Norouzi, H., Temimi, M., Prigent, C., Turk, J., Khanbilvardi, R., Tian, Y., et al. (2015). Assessment of the consistency among global microwave land surface emissivity products. Atmospheric Measurement Techniques, 8(3), 1197–1205. https://doi.org/10.5194/amt-8-1197-2015.

    Article  Google Scholar 

  • Pitman, A. J. (2003). The evolution of, and revolution in, land surface schemes designed for climate models. International Journal of Climatology, 23(5), 479–510.

    Article  Google Scholar 

  • Pitman, A. J., Henderson-Sellers, A., Desborough, C. E., Yang, Z.-L., Abramopoulos, F., Boone, A., et al. (1999). Key results and implications from phase 1 (c) of the project for intercomparison of land-surface parametrization schemes. Climate Dynamics, 15(9), 673–684.

    Article  Google Scholar 

  • Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda, M. G., et al. (2008). A description of the advanced research WRF version 3. Boulder: NCAR.

    Google Scholar 

  • Sukoriansky, S., Galperin, B., & Perov, V. (2005). Application of a new spectral theory of stably stratified turbulence to the atmospheric boundary layer over sea ice. Boundary Layer Meteorology, 117(2), 231–257.

    Article  Google Scholar 

  • Tewari, M., Chen, F., Wang, W., Dudhia, J., LeMone, M. A., Mitchell, K., et al. (2004). Implementation and verification of the unified NOAH land surface model in the WRF model. 20th conference on weather analysis and forecasting/16th conference on numerical weather prediction.

  • Timbal, B., & Henderson-Sellers, A. (1998). Intercomparisons of land-surface parameterizations coupled to a limited area forecast model. Global and Planetary Change, 19(1), 247–260.

    Article  Google Scholar 

  • Wang, W., Bruyère, C., Duda, M., Dudhia, J., Gill, D., Lin, H. C., et al. (2009). Advanced research WRF (ARW) version 3 modeling users guide, mesoscale & microscale meteorology division. National Center for Atmospheric Research (NCAR), USA. http://www.mmm.ucar.edu.ar/wrf/users/docs/arw_v3.pdf.

  • Wei, H., Xia, Y., Mitchell, K. E., & Ek, M. B. (2013). Improvement of the Noah land surface model for warm season processes: Evaluation of water and energy flux simulation. Hydrological Processes, 27(2), 297–303.

    Article  Google Scholar 

  • Wood, E. F., Lettenmaier, D. P., Liang, X., Lohmann, D., Boone, A., Chang, S., et al. (1998). The project for intercomparison of land-surface parameterization schemes (PILPS) Phase 2 (c) Red–Arkansas River basin experiment: 1. Experiment description and summary intercomparisons. Global and Planetary Change, 19(1), 115–135.

    Article  Google Scholar 

  • Yan, B., & Weng, F. (2011). Effects of microwave desert surface emissivity on AMSU-A data assimilation. IEEE Transactions on Geoscience and Remote Sensing, 49(4), 1263–1276. https://doi.org/10.1109/TGRS.2010.2091508.

    Article  Google Scholar 

  • Yang, K., Koike, T., Ishikawa, H., Kim, J., Li, X., Liu, H., et al. (2008). Turbulent flux transfer over bare-soil surfaces: Characteristics and parameterization. Journal of Applied Meteorology and Climatology, 47(1), 276–290.

    Article  Google Scholar 

  • Zheng, W., Wei, H., Wang, Z., Zeng, X., Meng, J., Ek, M., et al. (2012). Journal of Geophysical Research Atmospheres, 117, D6.

    Google Scholar 

  • Zilitinkevich, S. S. (1995). Air Pollution III—volume I Air pollution theory and simulation: Pollution dispersion aspects of coherent structure of convective flows. Boston: Computational Mechanics Publ.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Weston.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weston, M., Chaouch, N., Valappil, V. et al. Assessment of the Sensitivity to the Thermal Roughness Length in Noah and Noah-MP Land Surface Model Using WRF in an Arid Region. Pure Appl. Geophys. 176, 2121–2137 (2019). https://doi.org/10.1007/s00024-018-1901-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-018-1901-2

Keywords

Navigation