Skip to main content
Log in

The Sensitivity of Rainfall Characteristics to Cumulus Parameterization Schemes from a WRF Model. Part I: A Case Study Over East Africa During Wet Years

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The suitability of a weather research and forecasting model in simulating mean rainfall, number of rainy days (NRDs), intensity of rainy days and their frequencies is investigated over East Africa for selected wet years. Physical cumulus parameterizations using Kain–Fritsch (KF), Kain–Fritsch with a moisture advection-based trigger function (KFT), Grell–Dévényi (GRELL) and Betts–Miller–Janjic (BML) schemes were investigated. Results show that the schemes reproduce the general pattern of observed mean rainfall with reasonable accuracy; KF and GRELL schemes were more sensitive to simulations of rainfall characteristics. The KF (GRELL) simulations characteristically were associated with excess (deficient) rainfall. The BML scheme simulated a double signal of wet and dry rainfall biases. The KF and GRELL schemes simulated too many (fewer) NRDs under light (heavy) rainfall categories. Using a moisture advection function in the KFT scheme potentially lowered the excess rainfall simulated in the KF scheme. The reduced wet bias in simulated rainfall is due to better explicit physical mechanism realism of the trigger function in the KF scheme. A coherent statistical difference between KF and GRELL schemes was noted. The findings provide a basis upon which researchers and forecasters can improve numerical weather systems for better forecasting and simulations of East Africa extreme rainfall characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(source: Himeidan and Kweka 2012)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alapaty, K., Herwehe, J. A., Otte, T. L., Nolte, C. G., Bullock, O. R., Mallard, M. S., et al. (2012). Introducing subgrid-scale cloud feedbacks to radiation for regional meteorological and climate modeling. Geophysical Research Letters,39, L24809.

    Google Scholar 

  • Anyah, R. O., & Semazzi, F. H. M. (2007). Variability of east African rainfall based on multiyear RegCM3 simulations. International Journal of Climatology,27, 357–371.

    Google Scholar 

  • Anyah, R. O., Semazzi, F. H. M., & Xie, L. (2006). Simulated physical mechanisms associated with climate variability over Lake Victoria basin in East Africa. Monthly Weather Review,134, 3588–3609.

    Google Scholar 

  • Arakawa, A. (2004). The cumulus parameterization problem: Past, present, and future. Journal of Climate,17, 2493–2525.

    Google Scholar 

  • Arakawa, A., & Schubert, W. H. (1974). Interaction of a cumulus cloud ensemble with the large-scale environment. Part I. Journal of the Atmospheric Sciences,31, 674–701.

    Google Scholar 

  • Ardie, W. A., Sow, K. S., Tangang, F., Hussin, A. G., Mahmud, M., & Juneng, L. (2012). The performance of different cumulus parameterization schemes in simulating the 2006/2007 southern peninsular Malaysia heavy rainfall episodes. Journal of Earth System Science,12, 317–327.

    Google Scholar 

  • Betts, A. K. (1986). A new convective adjustment scheme. Part I: Observational and theoretical basis. Quarterly Journal of the Royal Meteorological Society,112, 677–691.

    Google Scholar 

  • Budakoti, S., Singh, C., & Pal, P. K. (2019). Assessment of various cumulus parameterization schemes for the simulation of very heavy rainfall event based on optimal ensemble approach. Atmospheric Research,218, 195–206.

    Google Scholar 

  • Chen, F., & Dudhia, J. (2001). Coupling an advanced land-surface/hydrology model with the Penn State/NCAR MM5 modeling system. Part 1: Model description and implementation. Monthly Weather Review,129, 569–585.

    Google Scholar 

  • Chen, H., Wan, Q., & Wang, Y. (2014). Refined Diebold–Mariano test methods for the evaluation of wind power forecasting models. Energies,7, 4185–4198.

    Google Scholar 

  • Choi, I. J., Jin, E. K., Han, J. Y., Kim, S. Y., & Kwon, Y. (2015). Sensitivity of diurnal variation in simulated precipitation during East Asian summer monsoon to cumulus parameterization schemes. Journal of Geophysical Research Atmospheres,120, 11–971.

    Google Scholar 

  • Crétat, J., Macron, C., Pohl, B., & Richard, Y. (2011). Quantifying internal variability in a regional climate model: A case study for Southern Africa. Climate Dynamics,37, 1335–1356.

    Google Scholar 

  • Crétat, J., & Pohl, B. (2012). How physical parameterizations can modulate internal variability in a regional climate model. Journal of Atmospheric Science,69, 714–724.

    Google Scholar 

  • Crétat, J., Pohl, B., Carmela, C. S., Vigaudd, N., & Yves, R. (2015). An original way to evaluate daily rainfall variability simulated by a regional climate model: The case of South African austral summer rainfall. International Journal of Climatology,35, 2485–2502.

    Google Scholar 

  • Crétat, J., Pohl, B., Richard, Y., & Drobinski, P. (2012). Uncertainties in simulating regional climate of Southern Africa: Sensitivity to physical parameterizations using WRF. Climate Dynamics,38, 613–634.

    Google Scholar 

  • Dai, A. (2006). Precipitation characteristics in eighteen coupled climate models. Journal of Climate,19, 4605–4630.

    Google Scholar 

  • Davis, N., Bowden, J., Semazzi, F. H. M., Xie, L., & Önol, B. (2009). Customization of RegCM3 Regional Climate Model for Eastern Africa and a Tropical Indian Ocean Domain. Journal of Climate,22, 3595–3616.

    Google Scholar 

  • Diebold, F. X. (2015). Comparing predictive accuracy, twenty years later: A personal perspective on the use and abuse of Diebold–Mariano tests. Journal of Business and Economic Statistics,33, 1.

    Google Scholar 

  • Diebold, F. X., & Mariano, R. S. (1991). Comparing predictive accuracy I: An asymptotic test. Minneapolis: Institute for Empirical Macroeconomics, Federal Reserve Bank of Minneapolis.

    Google Scholar 

  • Diebold, F. X., & Mariano, R. S. (2002). Comparing predictive accuracy. Journal of Business and Economic Statistics,20, 134–144.

    Google Scholar 

  • Endris, H. S., Omondi, P., Jain, S., Lennard, C., Hewitson, B., Chang’a, L., et al. (2013). Assessment of the performance of CORDEX Regional Climate Models in Simulating Eastern Africa Rainfall. Journal of Climate,26, 8453–8475.

    Google Scholar 

  • Fritsch, J. M., & Chappell, C. F. (1980). Numerical prediction of convectively driven mesoscale pressure systems. Part I: Convective parameterization. Atmos Sci,37, 1722–1733.

    Google Scholar 

  • Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., et al. (2015). The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Scientific Data,2, 150066.

    Google Scholar 

  • Gbode, I. E., Dudhia, J., Ogunjobi, K. O., & Ajayi, V. O. (2018). Sensitivity of different physics schemes in the WRF model during a West African monsoon regime. Theoretical and Applied Climatology,136, 1–19.

    Google Scholar 

  • Gianotti, R. L., Zhang, D., & Eltahir, E. A. (2012). Assessment of the regional climate model version 3 over the maritime continent using different cumulus parameterization and land surface schemes. Journal of Climate,25, 638–656.

    Google Scholar 

  • Gilleland, E., & Roux, G. (2015). A new approach to testing forecast predictive accuracy. Meteorological Applications,22, 534–543.

    Google Scholar 

  • Gitau, W., Camberlin, P., Ogallo, L., & Okoola, R. (2015). Oceanic and atmospheric linkages with short rainfall season intraseasonal statistics over Equatorial Eastern Africa and their predictive potential. International Journal of Climatology,35, 2382–2399.

    Google Scholar 

  • Grell, G. A. (1993). Prognostic evaluation of assumptions used by cumulus parameterizations. Monthly Weather Review,121, 764–787.

    Google Scholar 

  • Grell, G. A., & Dévényi, D. (2002). A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophysical Research Letters,29, 38–41.

    Google Scholar 

  • Grell, G. A., Dudhia, J., & Stauffer, D. R. (1994). A description of the fifth-generation Penn State/NCAR mesoscale model (MM5).

  • Harvey, D., Leybourne, S., & Newbold, P. (1997). Testing the equality of prediction mean squared errors. International Journal of Forecasting,13, 281–291.

    Google Scholar 

  • Himeidan, Y. E. S., & Kweka, E. (2012). Malaria in East African highlands during the past 30 years: Impact of environmental changes. Frontiers in Physiology,3, 315.

    Google Scholar 

  • Hong, S. Y., & Lim, J. O. J. (2006). The WRF single-moment 6-class microphysics scheme (WSM6). Journal of the Korean Meteorological Society,42, 129–151.

    Google Scholar 

  • Hong, S. Y., Noh, Y., & Dudhia, J. (2006). A new vertical diffusion package with an explicit treatment of entrainment processes. Monthly Weather Review,134, 2318–2341.

    Google Scholar 

  • Kain, J. S. (2004). The Kain–Fritsch convective parameterization: An update. Journal of Applied Meteorology,43, 170–181.

    Google Scholar 

  • Kain, J. S., & Fritsch, J. M. (1990). A one-dimensional entraining/detraining plume model and its application in convective parameterization. Journal of the Atmospheric Sciences,47, 2784–2802.

    Google Scholar 

  • Kerandi, N. M., Laux, P., Arnault, J., & Kunstmann, H. (2017). Performance of the WRF model to simulate the seasonal and interannual variability of hydrometeorological variables in East Africa: A case study for the Tana River basin in Kenya. Theor and Appl Climatol,130, 401–418.

    Google Scholar 

  • Kim, K., Eom, D. Y., Lee, D. K., & Kuo, Y. H. (2010). Diurnal variation of simulated 2007 summertime precipitation over South Korea in a real-time forecast model system. Asia-Pacific Journal of Atmospheric Sciences,46, 505–512.

    Google Scholar 

  • Laing, A. G., Carbone, R. E., & Levizzani, V. (2011). Cycles and propagation of deep convection over equatorial Africa. Monthly Weather Review,139, 2832–2853.

    Google Scholar 

  • Ma, L. M., & Tan, Z. M. (2009). Improving the behavior of the cumulus parameterization for tropical cyclone prediction: Convection trigger. Atmospheric Research,92, 190–211.

    Google Scholar 

  • Mariotti, L., Coppola, E., Sylla, M. B., Giorgi, F., & Piani, C. (2011). Regional climate model simulation of projected 21st century climate change over an all-Africa domain: Comparison analysis of nested and driving model results. Journal of Geophysical Research,116, D15111.

    Google Scholar 

  • Marteau, R., Richard, Y., Pohl, B., Smith, C. C., & Castel, T. (2015). High-resolution rainfall variability simulated by the WRF RCM: Application to eastern France. Climate Dynamics,44, 1093–1107.

    Google Scholar 

  • Mlawer, E., Taubman, S., Brown, P., Iacono, M., & Clough, S. (1997). Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the long-wave. Journal of Geophysical Research,102, 16663–16682.

    Google Scholar 

  • Mugume, I., Waiswa, D., Mesquita, M. D. S., Reuder, J., Basalirwa, C., Bamutaze, Y., et al. (2017). Assessing the performance of WRF model in simulating rainfall over western Uganda. Journal of Climatology and Weather Forecasting,5(1), 197.

    Google Scholar 

  • Nicholson, E. S. (2014). The predictability of rainfall over the Greater Horn of Africa. Part I: Prediction of seasonal rainfall. Journal of Hydrometeorology,15, 1011–1027.

    Google Scholar 

  • Ogwang, B. A., Chen, H., Li, X., & Gao, C. (2014). The influence of topography on East African October to December climate: Sensitivity experiments with RegCM4. Advances in Meteorology.

  • Otieno, V. O., & Anyah, R. O. (2012). Effects of land use changes on climate in the Greater Horn of Africa. Climate Research,52, 77–95.

    Google Scholar 

  • Otieno G, O. (2018).Optimized cumulus parameterization in WRF model for simulations of extreme rainfall over east Africa. PhD Thesis, University of Nairobi.

  • Otieno, G., Mutemi, J., Opijah, F., Ogallo, L., & Omondi, H. (2018). The impact of cumulus parameterization on rainfall simulations over East Africa. Atmospheric and Climate Sciences,8, 355–371.

    Google Scholar 

  • Pei, L., Moore, N., Zhong, S., Luo, L., Hyndman, D. W., Heilman, W. E., et al. (2014). WRF model sensitivity to land surface model and cumulus parameterization under short-term climate extremes over the southern Great Plains of the United States. Journal of Climate,27, 7703–7724.

    Google Scholar 

  • Philippon, N., Camberlin, P., Moron, V., & Boyard-Michea, J. (2015). Anomalously wet and dry rainy seasons in Equatorial East Africa and associated differences in intra-seasonal characteristics. Climate Dynamics,45, 1819–1840.

    Google Scholar 

  • Pohl, B., Cre´tat, J., & Camberlin, P. (2011). Testing WRF capability in simulating the atmospheric water cycle over Equatorial East Africa. Climate Dynamics,37, 1357–1379.

    Google Scholar 

  • Pohl, B., & Cretat, J. (2014). On the use of nudging techniques for regional climate modeling: Application for tropical convection. Climate Dynamics,43, 1693–1714.

    Google Scholar 

  • Prein, A. F., Langhans, W., Fosser, G., Ferrone, A., Ban, N., Goergen, K., et al. (2015). A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges. Reviews of Geophysics,53, 323–361.

    Google Scholar 

  • Ratna, S. B., Ratnam, J. V., Behera, S. K., de Ratnam, J. V., Rautenbach, C. J., Lennard, J.-J., et al. (2013). Performance assessment of three convective parameterization schemes in WRF for downscaling summer rainfall over South Africa. Climate Dynamics,26, 6015–6032.

    Google Scholar 

  • Ratnam, J. V., Behera, S. K., Krishnan, R., Doi, T., & Ratna, S. B. (2017). Sensitivity of Indian summer monsoon simulation to physical parameterization schemes in the WRF model. Climate Research,74, 43–66.

    Google Scholar 

  • Salih, A. M., Nadir, A. E., Michael, T., & Qiong, Z. (2018). Characterization of the Sahelian-Sudan rainfall based on observations and regional climate models. Atmospheric Research,202, 205–218.

    Google Scholar 

  • Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda, M., Huang, H., Wang, W., & Powers, J. G. (2008). A description of the advanced research WRF version 143 3. 53 NCAR Tech. Note.

  • Sun, Y., Dair, A., & Solomon, S. (2006). How often does it rain? Journal of Climate,19, 916–934.

    Google Scholar 

  • Truong, N. M., Tien, T. T., Pielke, R. A., Sr., Castro, C. L., & Leoncini, G. (2009). A modified Kain–Fritsch scheme and its application for the simulation of an extreme precipitation event in Vietnam. Monthly Weather Review,137, 766–789.

    Google Scholar 

  • Uppala, S., Dee, D., Kobayashi, S., Berrisford, P., & Simmons, A. (2008). Towards a climate data assimilation system: Status update of ERA-Interim. ECMWF Newsletter,115, 1218.

    Google Scholar 

  • Wang, W., & Seaman, N. L. (1997). A comparison study of convective parameterization schemes in a mesoscale model. Monthly Weather Review,125, 252–278.

    Google Scholar 

  • Wu, T., Min, J., & Wu, S. (2019). A comparison of the rainfall forecasting skills of the WRF ensemble forecasting system using SPCPT and other cumulus parameterization error representation schemes. Atmospheric Research,218, 160–175.

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the contribution from the anonymous reviewers whose useful comments and suggestions helped improve the present research paper. The computational resources for this study were provided under the PLSI Program by the Korea Institute of Science and Technology Information and PKNU Super-Computer Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Otieno.

Ethics declarations

Conflict of interest

The author declares a lack of potential conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Otieno, G., Mutemi, J.N., Opijah, F.J. et al. The Sensitivity of Rainfall Characteristics to Cumulus Parameterization Schemes from a WRF Model. Part I: A Case Study Over East Africa During Wet Years. Pure Appl. Geophys. 177, 1095–1110 (2020). https://doi.org/10.1007/s00024-019-02293-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-019-02293-2

Keywords

Navigation