Skip to main content
Log in

Seismic Hazard Analysis for the South-Central Coastal Region of Bangladesh Considering the Worst-Case Scenario

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

There is a long history of catastrophic earthquakes in and around Bangladesh due to the ongoing collision of the Indian and Eurasian plates. In this study, deterministic seismic hazard analysis (DSHA) is carried out for the south-central coastal region of Bangladesh. As a case study, important locations (i.e., Kumirmara, Nilganj, Dhulasar, Moudubi, and Char Muntaz) are selected to identify the areas that will experience the maximum and minimum seismic hazards if a catastrophic earthquake occurs. The peak ground acceleration (PGA) and spectral acceleration (SA) values at bedrock and ground surface conditions are estimated considering the worst-case scenario by using all possible seismogenic sources, controlling earthquakes, and two sets of ground motion prediction equations (GMPEs). The GMPEs and seismotectonic maps are used to determine the controlling earthquakes and the shortest distances from the sources to study areas. It is predicted that the Chittagong-Tripura folded belt (CTFB) source, which is located at the shortest distance from the selected areas, may produce the maximum magnitude earthquake. As the ground motion intensities depend on the earthquake magnitude and the distance from the sources, the maximum ground motion (PGA and SA) is observed for the CTFB source. The estimated maximum and minimum PGA values are 0.535 g and 0.301 g at the reference bedrock conditions in Char Muntaz and Kumirmara, respectively. It is observed that at all conditions and for all sources, Char Muntaz will experience the greatest ground motion and Kumirmara will experience the least ground motion. The result of this study will help to select the areas for the development of critical infrastructure in the coastal region of Bangladesh.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abrahamson, N., Gregor, N., & Addo, K. (2016). BC hydro ground motion prediction equations for subduction earthquakes. Earthquake Spectra, 32(1), 23–44. https://doi.org/10.1193/051712EQS188MR

    Article  Google Scholar 

  • Abrahamson, N., Silva, W., & Kamai, R. (2014). Summary of the ASK14 Ground-Motion Relation for Active Crustal Regions. Earthquake Spectra, 30(3), 1025–1055. https://doi.org/10.1193/070913EQS198M

    Article  Google Scholar 

  • Ader, T., Avouac, J.-P., Liu-Zeng, J., Lyon-Caen, H., Bollinger, L., Galetzka, J., & Flouzat, M. (2012). Convergence rate across the Nepal Himalaya and interseismic coupling on the Main Himalayan Thrust: Implications for seismic hazard. Journal of Geophysical Research (solid Earth), 117, 4403. https://doi.org/10.1029/2011JB009071

    Article  Google Scholar 

  • Alam, M. J., & Islam, M. S. (2009). Geological aspects of soil formation of Bangladesh. In Proceedings of Bangladesh Geotechnical Conference (BGC-2009), Dhaka, Bangladesh (December 2009), pp. 174–183

  • Ambraseys, N. N., & Douglas, J. (2004). Magnitude calibration of north Indian earthquakes. Geophysical Journal International, 159(1), 165–206. https://doi.org/10.1111/j.1365-246X.2004.02323.x

    Article  Google Scholar 

  • Angelier, J., & Baruah, S. (2009). Seismotectonics in Northeast India: A stress analysis of focal mechanism solutions of earthquakes and its kinematic implications. Geophysical Journal International, 178(1), 303–326. https://doi.org/10.1111/j.1365-246X.2009.04107.x

    Article  Google Scholar 

  • Atkinson, G. M., & Boore, D. M. (2003). Empirical ground-motion relations for subduction-zone earthquakes and their application to Cascadia and other regions. Bulletin of the Seismological Society of America, 93(4), 1703–1729. https://doi.org/10.1785/0120020156

    Article  Google Scholar 

  • Bai, L., Klemperer, S. L., Mori, J., Karplus, M. S., Ding, L., Liu, H., & Dhakal, S. (2019). Lateral variation of the Main Himalayan Thrust controls the rupture length of the 2015 Gorkha earthquake in Nepal. Science Advances, 5(6), 1–8. https://doi.org/10.1126/sciadv.aav0723

    Article  Google Scholar 

  • Barman, P., Jade, S., & Ashok, T. S. S. (2017). Crustal deformation rates in Assam Valley, Shillong Plateau, Eastern Himalaya, and Indo - Burmese region from 11 years (2002–2013) of GPS measurements. International Journal of Earth Sciences, 106(6), 2025–2038. https://doi.org/10.1007/s00531-016-1407-z

    Article  Google Scholar 

  • Baro, O., & Kumar, A. (2017). Seismic source characterization for the Shillong Plateau in Northeast India. Journal of Seismology, 21(5), 1229–1249. https://doi.org/10.1007/s10950-017-9664-2

    Article  Google Scholar 

  • Berthet, T., Ritz, J., Ferry, M., Pelgay, P., Cattin, R., & Drukpa, D. (2014). Active tectonics of the eastern Himalaya: New constraints from the first tectonic geomorphology study in southern Bhutan Active tectonics of the eastern Himalaya: New constraints from the first tectonic geomorphology study in southern Bhutan. Geology. https://doi.org/10.1130/G35162.1

    Article  Google Scholar 

  • Bilham, R., & England, P. (2001). Plateau ‘pop-up’ in the great 1897 Assam earthquake. Nature, 410(6830), 806–809. https://doi.org/10.1038/35071057

    Article  Google Scholar 

  • Bilham, R., Gaur, V., & Molnar, P. (2001). Himalayan seismic hazard. Science (new York, N.y.), 293, 1442–1444. https://doi.org/10.1126/science.1062584

    Article  Google Scholar 

  • Blaser, L. (2010). Scaling relations of earthquake source parameter estimates with special focus on subduction environment. Bulletin of the Seismological Society OF America, 100, 2914–2926. https://doi.org/10.1785/0120100111

    Article  Google Scholar 

  • BNBC. (1993). Bangladesh National Buiding Codes (BNBC). Housing and Building Research Institute and Bangladesh Standards and Testing Institution, Dhaka, Bangladesh

  • BNBC. (2017). Bangladesh National Building Code. Housing and Building Research Institute, 3, 301–312.

    Google Scholar 

  • Bommer, J. J. (2002). Deterministic vs. Probabilistic seismic hazard assessment: An exaggerated and obstructive dichotomy. Journal of Earthquake Engineering, 6, 43–73. https://doi.org/10.1080/13632460209350432

    Article  Google Scholar 

  • Boore, D. M., Stewart, J. P., Seyhan, E., & Atkinson, G. M. (2014). NGA-West2 equations for predicting PGA, PGV, and 5% damped PSA from shallow crustal earthquakes. Earthquake Spectra, 30(3), 1057–1085. https://doi.org/10.1193/072114EQS116M

    Article  Google Scholar 

  • Campbell, K. W., & Bozorgnia, Y. (2014). NGA-West2 ground motion model for the average horizontal components of PGA, PGV, and 5% damped linear acceleration response spectra. Earthquake Spectra, 30(3), 1087–1114. https://doi.org/10.1193/062913EQS175M

    Article  Google Scholar 

  • Carlton, B. D., Skurtveit, E., Bohloli, B., Atakan, K., Dondzila, E., & Kaynia, A. M. (2018). Probabilistic seismic hazard analysis for offshore Bangladesh including fault sources. In Proceedings 5th Geotechnical earthquake engineering and soil dynamics conference, Austin, Texas (pp. 154–163). https://doi.org/10.1061/9780784481462.015

  • CDMP. (2009). Seismic hazard and vulnerability assessment of Dhaka, Chittagong and Sylhet city corporation areas. Final report, Comprehensive Disaster Management Programme (CDMP). Dhaka, Bangladesh

  • Chiou, B., & Youngs, R. (2014). Update of the Chiou and Youngs NGA model for the average horizontal component of peak ground motion and response spectra. Earthquake Spectra, 30, 1117–1153. https://doi.org/10.1193/072813EQS219M

    Article  Google Scholar 

  • Cornell, C. A. (1968). Engineering seismic risk analysis. Bulletin of the Seismological Society of America, 58(5), 1583–1606.

    Article  Google Scholar 

  • Duarah, B. P., & Phukan, S. (2011). Understanding the tectonic behaviour of the Shillong Plateau, India using remote sensing data. Journal of the Geological Society of India, 77(2), 105–112. https://doi.org/10.1007/s12594-011-0013-8

    Article  Google Scholar 

  • Green, R. A., & Hall, W. J. (1994). An overview of selected seismic hazard by (pp. 1–91). Dept. of Civil Engineering, University of Illinois at Urbana-Champaign.

  • GSB. (1979). Seismic zoning map of Bangladesh and outline of a code for earthquake resistant design of structure. Dhaka, Bangladesh

  • Gürboğa, Ş., & Sarp, G. (2013). Application of deterministic seismic hazard analysis on the area of 1970 Gediz earthquake. International Journal of Engineering & Applied Sciences, 5(2), 18–37.

    Google Scholar 

  • Haque, D. M. E., Khan, N. W., Selim, M., Kamal, A. S. M. M., & Chowdhury, S. H. (2020). Towards improved probabilistic seismic hazard assessment for Bangladesh. Pure and Applied Geophysics, 177(7), 3089–3118. https://doi.org/10.1007/s00024-019-02393-z

  • Hoque, M. A., & Khan, A. A. (2001). Seismicity and seismotectonic regionalization of the Bengal Basin, Bangladesh. Bangladesh Journal of Geology, 20, 77–86.

    Google Scholar 

  • Huang, J., & Zhao, D. (2006). High-resolution mantle tomography of China and surrounding regions. Journal of Geophysical Research: Solid Earth, 111(9), 1–21. https://doi.org/10.1029/2005JB004066

    Article  Google Scholar 

  • IAEA/NS-G-1.6. (2003). Seismic design and qualification for nuclear power plants. IAEA Safety Standards Series, Safety Guide No. NS-G-1.6

  • IAEA. (2010). Seismic hazards in site evaluation for nuclear installations SSG-9. IAEA SSafety Standards (Vol. 8). https://doi.org/10.1016/S1322-7696(08)60187-0

  • Idriss, I. M. (2014). An NGA-West2 empirical model for estimating the horizontal spectral values generated by shallow crustal earthquakes. Earthquake Spectra, 30(3), 1155–1177. https://doi.org/10.1193/070613EQS195M

    Article  Google Scholar 

  • INPO. (2012). Lessons learned from the accident at the Fukushima Daiichi Nuclear Power Plant. INPO 11-005 Addendum, Special Report. Retrieved from http://nuclearfundamentals.org/files/11-005-Fukushima-Addendum2.pdf

  • Ismet Kanli, A., Tildy, P., Prónay, Z., Pinar, A., & Hermann, L. (2006). Vs30 mapping and soil classification for seismic site effect evaluation in Dinar region. SW Turkey. Geophysical Journal International, 165(1), 223–235. https://doi.org/10.1111/j.1365-246X.2006.02882.x

    Article  Google Scholar 

  • Kaklamanos, J., Baise, L. G., & Boore, D. M. (2011). Estimating unknown input parameters when implementing the NGA ground-motion prediction equations in engineering practice. Earthquake Spectra, 27(4), 1219–1235. https://doi.org/10.1193/1.3650372

    Article  Google Scholar 

  • Kataria, N. P., Shrikhande, M., & Das, J. D. (2013). Deterministic seismic hazard analysis of Andaman and Nicobar Islands. Journal of Earthquake and Tsunami, 7(4), 1350035. https://doi.org/10.1142/S1793431113500358

  • Kayal, J. R., Arefiev, S. S., Barua, S., Hazarika, D., Gogoi, N., Kumar, A., & Kalita, S. (2006). Shillong plateau earthquakes in northeast India region: Complex tectonic model. Current Science, 91(1), 109–114.

    Google Scholar 

  • Kijko, A. (2004). Estimation of the maximum earthquake magnitude, mmax. Pure and Applied Geophysics, 161(8), 1655–1681. https://doi.org/10.1007/s00024-004-2531-4

    Article  Google Scholar 

  • Kramer, S. L. (1996). Geotecnical earthuake engineering. Upper Saddle River, RJ: Prentice–Hall Inc.

  • Krinitzsky, E. L. (1995). Deterministic versus probabilistic seismic hazard analysis for critical structures. Engineering Geology, 40, 1–7. https://doi.org/10.1016/0013-7952(95)00031-3

    Article  Google Scholar 

  • Kumar, A., Mitra, S., & Suresh, G. (2015). Seismotectonics of the eastern Himalayan and Indo-Burman plate boundary systems. Tectonics, 34(11), 2279–2295. https://doi.org/10.1002/2015TC003979

    Article  Google Scholar 

  • Liu, Y., Hubbard, J., Almeida, R. V., Foster, A., Liberty, L., Lee, Y. S., & Sapkota, S. N. (2020). Constraints on the shallow deformation around the Main Frontal Thrust in central Nepal from refraction velocities. Tectonophysics. https://doi.org/10.1016/j.tecto.2020.228366

    Article  Google Scholar 

  • Mahanta, K., Chowdhury, J. D., & Islam, A. (2012). Structural formation & seismicity of Kopili Fault Region in North- East India and estimation of its crustal velocity. International Journal of Modern Engineeriing Research, 2(6), 4699–4702.

    Google Scholar 

  • Martin, S., & Szeliga, W. (2010). A catalog of felt intensity data for 570 earthquakes in India from 1636 to 2009. Bulletin of the Seismological Society of America, 100(2), 562–569. https://doi.org/10.1785/0120080328

    Article  Google Scholar 

  • Morino, M., Kamal, A. S. M. M., Akhter, S. H., Rahman, M. Z., Ali, R. M. E., Talukder, A., et al. (2014). A paleo-seismological study of the Dauki fault at Jaflong, Sylhet, Bangladesh: Historical seismic events and an attempted rupture segmentation model. Journal of Asian Earth Sciences, 91, 218–226. https://doi.org/10.1016/j.jseaes.2014.06.002

  • Mualchin, L. (2005). Seismic hazard analysis for critical infrastructures in California. Engineering Geology, 79(3–4), 177–184. https://doi.org/10.1016/j.enggeo.2005.01.009

    Article  Google Scholar 

  • Muldashev, I. A., & Sobolev, S. V. (2020). What controls maximum magnitudes of giant subduction earthquakes? Geochemistry, Geophysics Geosystems. https://doi.org/10.1029/2020GC009145

    Article  Google Scholar 

  • Naik, N., & Choudhury, D. (2015). Deterministic seismic hazard analysis considering different seismicity levels for the state of Goa. India. Natural Hazards, 75(1), 557–580. https://doi.org/10.1007/s11069-014-1346-6

    Article  Google Scholar 

  • Nath, S. K., & Thingbaijam, K. K. S. (2011). Peak ground motion predictions in India: An appraisal for rock sites. Journal of Seismology, 15(2), 295–315. https://doi.org/10.1007/s10950-010-9224-5

    Article  Google Scholar 

  • Rahman, M. M., & Bai, L. (2018). Probabilistic seismic hazard assessment of Nepal using multiple seismic source models. Earth and Planetary Physics, 2(4), 327–341. https://doi.org/10.26464/epp2018030

    Article  Google Scholar 

  • Rahman, M. M., Bai, L., Khan, N. G., & Li, G. (2018). Probabilistic seismic hazard assessment for Himalayan-Tibetan region from historical and instrumental earthquake catalogs. Pure and Applied Geophysics, 175(2), 685–705. https://doi.org/10.1007/s00024-017-1659-y

    Article  Google Scholar 

  • Rahman, M. Z., Siddiqua, S., & Kamal, A. S. M. M. (2020). Seismic source modeling and probabilistic seismic hazard analysis for Bangladesh. Natural Hazards. https://doi.org/10.1007/s11069-020-04094-6

    Article  Google Scholar 

  • Rahman, M. Z., Siddiqua, S., & Kamal, A. S. M. M. (2021). Site response analysis for deep and soft sedimentary deposits of Dhaka City, Bangladesh. Natural Hazards. https://doi.org/10.1007/s11069-021-04543-w

    Article  Google Scholar 

  • Reiter, L. (1990). Earthquake hazard analysis: Issues and insights. New York: Columbia University Press

  • Roy, A. B., & Chatterjee, A. (2015). Tectonic framework and evolutionary history of the Bengal Basin in the Indian subcontinent. Current Science. https://doi.org/10.18520/cs/v109/i2/271-279

    Article  Google Scholar 

  • Sapkota, S. N., Bollinger, L., Klinger, Y., Tapponnier, P., Gaudemer, Y., & Tiwari, D. (2013). Primary surface ruptures of the great Himalayan earthquakes in 1934 and 1255. Nature Geoscience, 6(1), 71–76. https://doi.org/10.1038/ngeo1669

    Article  Google Scholar 

  • Scherbaum, F., Schmedes, J., & Cotton, F. (2004). On the conversion of source-to-site distance measures for extended earthquake source models. Bulletin of the Seismological Society of America, 94(3), 1053–1069. https://doi.org/10.1785/0120030055

    Article  Google Scholar 

  • Shinjo, R., & Kayal, J. R. (2011). Pop-up tectonics of the Shillong Plateau in northeastern India: Insight from numerical simulations. Gondwana Research. https://doi.org/10.1016/j.gr.2010.11.007

    Article  Google Scholar 

  • Sikder, A. M., & Alam, M. M. (2003). 2-D modelling of the anticlinal structures and structural development of the eastern fold belt of the Bengal Basin. Bangladesh. Sedimentary Geology, 155(3–4), 209–226. https://doi.org/10.1016/S0037-0738(02)00181-1

    Article  Google Scholar 

  • Singh, A., Bhushan, K., Singh, C., Steckler, M. S., Akhter, S. H., Seeber, L., & Biswas, R. (2016). Crustal structure and tectonics of Bangladesh: New constraints from inversion of receiver functions. Tectonophysics, 680, 99–112. https://doi.org/10.1016/j.tecto.2016.04.046

    Article  Google Scholar 

  • Sitharam, T. G., & Anbazhagan, P. (2007). Seismic hazard analysis for the Bangalore Region. Natural Hazards, 40(2), 261–278. https://doi.org/10.1007/s11069-006-0012-z

    Article  Google Scholar 

  • Sitharam, T. G., Anbazhagan, P., & Raj, K. G. (2006). Deterministic seismic hazard analysis and estimation of PHA for Bangalore City. In International conference on earthquake engineering (pp. 1–8)

  • Steckler, M. S., Akhter, S. H., & Seeber, L. (2008). Collision of the Ganges-Brahmaputra Delta with the Burma Arc: Implications for earthquake hazard. Earth and Planetary Science Letters, 273, 367–378. https://doi.org/10.1016/j.epsl.2008.07.009

    Article  Google Scholar 

  • Steckler, M. S., Mondal, D. R., Akhter, S. H., Seeber, L., Feng, L., Gale, J., & Howe, M. (2016). Locked and loading megathrust linked to active subduction beneath the Indo-Burman Ranges. Nature Geoscience, 9(8), 615–618. https://doi.org/10.1038/ngeo2760

    Article  Google Scholar 

  • Strasser, F. O., Arango, M. C., & Bommer, J. J. (2010). Scaling of the source dimensions of interface and intraslab subduction-zone earthquakes with moment magnitude. Seismological Research Letters, 81(6), 941–950.

    Article  Google Scholar 

  • Uddin, M. N., Rahman, M. A., Mofijur, M., Taweekun, J., Techato, K., & Rasul, M. G. (2019). ScienceDirect ScienceDirect Renewable energy in Symposium Bangladesh: Status and prospects Renewable energy in Bangladesh: Status and prospects function district. Energy Procedia, 160, 655–661. https://doi.org/10.1016/j.egypro.2019.02.218

    Article  Google Scholar 

  • Wang, Y., Sieh, K., Tun, S. T., Lai, K.-Y., & Myint, T. (2014). Active tectonics and earthquake potential of the Myanmar region. Journal of Geophysical Research: Solid Earth, 119(4), 3767–3822. https://doi.org/10.1002/2013JB010762

    Article  Google Scholar 

  • Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin-Seismological Society of America, 84(4), 974–1002.

    Google Scholar 

  • Wheeler, R. L. (2009). Methods of Mmax Estimation East of the Rocky Mountains. U.S Geologiclal Survey Open-File Report 2009-1018 (online only), 44 pp. Retrieved from https://pubs.er.usgs.gov/publication/ofr20091018.

  • Yen, Y. T., & Ma, K. F. (2011). Source-Scaling relationship for M 4.6–8.9 earthquakes, specifically for earthquakes in the Collision Zone of Taiwan. Bulletin of the Seismological Society of America, 101(2), 464–481. https://doi.org/10.1785/0120100046

    Article  Google Scholar 

  • Yu, W., & Sieh, K. (2013). Active tectonic features that pose a seismic threat to Bangladesh. Comprehensive Disaster Management Programme (CDMP).

  • Zhao, J. (2006). Attenuation relations of strong ground motion in Japan using site classification based on predominant period. Bulletin of the Seismological Society of America, 96, 898–913. https://doi.org/10.1785/0120050122

    Article  Google Scholar 

Download references

Acknowledgements

This research work is supported by the Department of Disaster Science and Management, Dhaka University. We are thankful to the K. C. Wong Education Foundation (GJTD-2019-04) and Chinese Academy of Sciences as President's International Fellowship Initiative (PIFI) for Postdoctoral fellow to M. Moklesur Rahman. We are very grateful to Baker Research Group (https://web.stanford.edu/~bakerjw/index.htm) for developing the seismic hazard estimation tools and making them available for all users. We would like to thank the anonymous reviewers for their constructive review comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Zillur Rahman.

Ethics declarations

Conflict of Interest

A. S. M. Maksud Kamal, Momtahina Mitu, Md. Shakhawat Hossain, M. Moklesur Rahman and Md. Zillur Rahman declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamal, A.S.M.M., Mitu, M., Hossain, M.S. et al. Seismic Hazard Analysis for the South-Central Coastal Region of Bangladesh Considering the Worst-Case Scenario. Pure Appl. Geophys. 178, 2821–2838 (2021). https://doi.org/10.1007/s00024-021-02770-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-021-02770-7

Keywords

Navigation