Skip to main content
Log in

New Solutions for (1+1)-Dimensional and (2+1)-Dimensional Kaup–Kupershmidt Equations

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

In this paper, using the exp-function method we obtain some new exact solutions for (1+1)-dimensional and (2+1)-dimensional Kaup–Kupershmidt (KK) equations. We show figures of some of the new solutions obtained here. We conclude that the exp-function method presents a wider applicability for handling nonlinear partial differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Biswas A., Milovic D., Ranasinghe A.: Solitary waves of Boussinesq equation in a power law media. Commun. Nonlinear Sci. Numer. Simul. 14(11), 3738–3742 (2009)

    Article  MATH  Google Scholar 

  2. Biswas A., Milovic D.: Chiral solitons with Bohm potential by He’s variational principle. Phys. Atom. Nuclei 74(5), 781–783 (2011)

    Article  Google Scholar 

  3. Girgis L., Biswas A.: A study of solitary waves by He’s semi-inverse variational principle. Waves Random Compl Med. 21(1), 96–104 (2011)

    Article  MathSciNet  Google Scholar 

  4. Triki H., Wazwaz A.M.: Bright and dark soliton solutions for a K(m, n) equation with t-dependent coefficients. Phys. Lett. A 373, 2162–2165 (2009)

    Article  MATH  Google Scholar 

  5. Wazwaz A.M.: New solitary wave solutions to the modified Kawahara equation. Phys. Lett. A 360, 588–592 (2007)

    Article  MathSciNet  Google Scholar 

  6. Wazwaz A.-M.: Compactons and solitary wave solutions for the Boussinesq wave equation and its generalized form. Appl. Math. Comput. 182(1), 529–535 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Yildirim A., Mohyud-Din S.T.: A variational approach to soliton solutions of good Boussinesq equation. J. King Saud Univ. Sci. 22(4), 205–208 (2010)

    Article  Google Scholar 

  8. Ma W.X., Maruno K.: Complexiton solutions of the Toda lattice equation. Phys. A 343, 219–237 (2004)

    MathSciNet  Google Scholar 

  9. Ma W.X.: Soliton, positon and negaton solutions to a Schrodinger self consistent source equation. J. Phys. Soc. Jpn. 72, 3017–3019 (2003)

    Article  MATH  Google Scholar 

  10. Ma W.X.: Complexiton solutions of the Korteweg–de Vries equation with self consistent sources. Chaos Solitons Fractals 26, 1453–1458 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ling L.H., Qiang L.X.: Exact Solutions to (2+1)-dimensional Kaup–Kupershmidt equation. Commun. Theor. Phys. 52, 795–800 (2009)

    Article  MATH  Google Scholar 

  12. Reyes E.G.: Nonlocal symmetries and the Kaup–Kupershmidt equation. J. Math. Phys. 46, 073507 (2005)

    Article  MathSciNet  Google Scholar 

  13. Kupershmidt B.A.: A super Korteweg–de Vries equation:an integrable system. Phys. Lett. A 102, 213 (1994)

    Article  MathSciNet  Google Scholar 

  14. Zait R.A.: Bäcklund transformations, cnoidal wave and travelling wave solutions of the SK and KK equations. Chaos Solitons Fractals 15, 673 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. He J.H., Wu X.H.: Exp-function method for nonlinear wave equations. Chaos Solitons Fractals 30, 700 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Yıldırım A., Pınar Z.: Application of Exp-function method for nonlinear reaction-diffusion equations arising in mathematical biology. Comput. Math. Appl. 60, 1873–1880 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mohyud-din S.T., Noor M.A., Noor K.I.: Exp-function method for solving higher-order boundary value problems. Bull. Inst. Math. Acad. Sinica (New Series) 4(2), 219–234 (2009)

    MathSciNet  MATH  Google Scholar 

  18. Zhang S.: Exp-function method for solving Maccari’s system. Phys. Lett. A 371, 65–71 (2007)

    Article  MATH  Google Scholar 

  19. He J.H., Abdou M.A.: New periodic solutions for nonlinear evolution equations using exp-function method. Chaos Solitons Fractals 34, 1421–1429 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ma W.X., You Y.: Solving the Korteweg–de Vries equation by its bilinear form: Wronskian solutions. Trans. Am. Math. Soc. 357, 1753–1778 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ma W.X., Li C.X., He J.S.: A second Wronskian formulation of the Boussinesq equation. Nonlinear Anal. Theory Methods Appl. 70, 4245–4258 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ma W.X., Lee J.-H.: A transformed rational function method and exact solutions to the 3+1 dimensional Jimbo–Miwa equation. Chaos Solitons Fractals 42, 1356–1363 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ma W.X., Huang T.W., Zhang Y.: A multiple exp-function method for nonlinear differential equations and its application. Phys. Scripta 82, 065003 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zehra Pınar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhrawy, A.H., Biswas, A., Javidi, M. et al. New Solutions for (1+1)-Dimensional and (2+1)-Dimensional Kaup–Kupershmidt Equations. Results. Math. 63, 675–686 (2013). https://doi.org/10.1007/s00025-011-0225-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00025-011-0225-7

Mathematics Subject Classification (2010)

Keywords

Navigation