Skip to main content
Log in

Bounds for the Gamma Function

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

We improve the upper bound of the following inequalities for the gamma function \(\Gamma \) due to H. Alzer and the author.

$$\begin{aligned} \exp \left( -\frac{1}{2}\psi (x+1/3)\right)<\frac{\Gamma (x)}{x^xe^{-x}{\sqrt{2\pi }}} <\exp \left( -\frac{1}{2}\psi (x)\right) . \end{aligned}$$

We also prove the following new inequalities: for \(x\ge 1\)

$$\begin{aligned} {\sqrt{2\pi }}x^xe^{-x}\left( x^2+\frac{x}{3}+a_*\right) ^{\frac{1}{4}}<\Gamma (x+1)<{\sqrt{2\pi }}x^xe^{-x}\left( x^2+\frac{x}{3}+a^*\right) ^{\frac{1}{4}} \end{aligned}$$

with the best possible constants \(a_*=\frac{e^4}{4\pi ^2}-\frac{4}{3}=0.049653963176\ldots \), and \(a^*=1/18=0.055555\ldots \), and for \(x\ge 0\)

$$\begin{aligned} \exp \left[ x\psi \left( \frac{x}{\log (x+1)}\right) \right] \le \Gamma (x+1)\le \exp \left[ x\psi \left( \frac{x}{2}+1\right) \right] , \end{aligned}$$

where \(\psi \) is the digamma function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alzer, H.: Sharp upper and lower bounds for the gamma function. Proc. R. Soc. Edinb. Sect. A Math. 139(4), 709–718 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alzer, H.: On Ramanujan’s double inequality for the gamma function. Bull. Lond. Math. Soc. 35, 601–607 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alzer, H.: On some inequalities for the gamma and psi functions. Math. Comput. 66(217), 373–389 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alzer, H., Batir, N.: Monotonicity properties of the gamma function. Appl. Math. Lett. 20, 778–781 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Batir, N.: Inequalities for the gamma function. Arch. Math. (Basel) 91, 554–563 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Batir, N.: Very accurate approximations for the factorial function. J. Math. Inequal. 3, 335–344 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Borwein, J.M., Borwein, P.: Pi and the AGM. Wiley, New York (1987)

    MATH  Google Scholar 

  8. Chen, C.-P., Tong, W.-W.: Sharp inequalities and asymptotic expansions for the gamma function. J. Number Theory 160, 418–431 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, C.-P.: A more accurate approximation for the gamma function. J. Number Theory 164, 417–428 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, C.-P., Liu, J.-Y.: Inequalities and asymptotic expansions for the gamma function. J. Number Theory 149, 313–326 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, C.-P.: Monotonicity properties, inequalities and asymptotic expansions associated with the gamma function. Appl. Math. Comput. 283, 385–396 (2016)

    MathSciNet  Google Scholar 

  12. Davis, P.J.: Leonard Euler’s integral: a historical profile of the gamma function. Am. Math. Mon. 66, 849–869 (1959)

    Article  MATH  Google Scholar 

  13. Lu, D., Wang, X.: A new asymptotic expansion and some inequalities for the gamma function. J. Number Theory 140, 314–323 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Marsden, J.E.: Basic Complex Analysis. W. H. Freeman and Company, San Fransisco (1973)

    MATH  Google Scholar 

  15. Mortici, C.: New approximations of the gamma function in terms of the digamma function. Appl. Math. Lett. 23, 97–100 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Salem, A.: A completely monotonic function involving q-gamma and q-digamma functions. J. Approx. Theory 164, 971–980 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Srivastava, H.M., Choi, J.: Zeta and \(q\)-Zeta Functions and Associated Series and Integrals. Elsevier, Amsterdam (2012)

    MATH  Google Scholar 

  18. Yang, Z.-H., Chu, Y.-M.: Asymptotic formulas for gamma function with applications. Appl. Math. Comput. 270, 665–680 (2015)

    MathSciNet  Google Scholar 

  19. Widder, D.V.: The Laplace Transform. Princeton University Press, Princeton (1946)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Necdet Batır.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batır, N. Bounds for the Gamma Function. Results Math 72, 865–874 (2017). https://doi.org/10.1007/s00025-017-0698-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00025-017-0698-0

Mathematics Subject Classification

Keywords

Navigation