Skip to main content

Advertisement

Log in

Oxidation and emission of methane in a monomictic lake (Rotsee, Switzerland)

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

An Erratum to this article was published on 14 December 2010

Abstract

The build-up of methane in the hypolimnion of the eutrophic Lake Rotsee (Lucerne, Switzerland) was monitored over a full year. Sources and sinks of methane in the water column were characterized by measuring concentrations and carbon isotopic composition. In fall, high methane concentrations (up to 1 mM) were measured in the anoxic water layer. In the oxic layer, methane concentrations were much lower and the isotopic composition shifted towards heavy carbon isotopes. Methane oxidation rates peaked at the interface between oxic and anoxic water layers at around 8–10 m depth. The electron balance between the oxidants oxygen, sulphate, and nitrate, and the reductants methane, sulphide and ammonium, matched very well in the chemocline during the stratified season. The profile of carbon isotopic composition of methane showed strong indications for methane oxidation at the chemocline (including the oxycline). Aerobic methane oxidizing bacteria were detected at the interface using fluorescence in situ hybridization. Sequencing the responsible organisms from DGGE bands revealed that aerobic methanotrophs type I closely related to Methylomonas were present. Sulphate consumption occurred at the sediment surface and, only towards the end of the stagnation period, matched with a zone of methane consumption. In any case, the flux of sulphate below the chemocline was not sufficient to oxidize all the methane and other oxidants like nitrate, iron or manganese are necessary for the observed methane oxidation. Although most of the methane was oxidized either aerobically or anaerobically, Lake Rotsee was still a source of methane to the atmosphere with emission rates between 0.2 mg CH4 m−2 day−1 in February and 7 mg CH4 m−2 day−1 in November.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Barker JF, Fritz P (1981) Carbon isotopic fractionation during microbial methane oxidation. Nature 293:289–291

    Article  CAS  Google Scholar 

  • Bastviken D, Cole J, Pace M, Tranvik L (2004) Methane emissions from lakes: dependence of lake characteristics, two regional assessments, and a global estimate. Global Biogeochem Cycles 18:GB4009. doi:10.1029/2004GB002238

  • Beal EJ, House CH, Orphan VJ (2009) Manganese- and iron-dependent marine methane oxidation. Science 325:184–187

    Article  CAS  PubMed  Google Scholar 

  • Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jørgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626

    Article  CAS  PubMed  Google Scholar 

  • Bourne DG, Holmes AJ, Iversen N, Murrell C (2000) Fluorescent oligonucleotide rDNA probes for specific detection of methane oxidising bacteria. FEMS Microb Ecol 31:29–38

    Article  CAS  Google Scholar 

  • Bussmann I (2005) Methane release through resuspension of littoral sediment. Biogeochemistry 74:283–302

    Article  CAS  Google Scholar 

  • Cicerone RJ, Oremland RS (1988) Biogeochemical aspects of atmospheric methane. Global Biogeochem Cycles 2:299–327

    Article  CAS  Google Scholar 

  • Cole JJ, Caraco NF (1998) Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6. Limnol Oceanogr 43:647–656

    Article  CAS  Google Scholar 

  • Conrad R (1989) Control of methane production in terrestrial ecosystems. In: Andreae MO, Schimel DS (eds) Exchange of trace gases between terrestrial ecosystems and the atmosphere. Dahlem Konferenzen, Wiley, Chichester, pp 39–58

    Google Scholar 

  • Coolen MJL, Hopmans EC, Rijpstra WIC, Muyzer G, Schouten S, Volkman JK, Sinninghe Damste JS (2004) Evolution of the methane cycle in Ace Lake (Antarctica) during the Holocene: response of methanogens and methanotrophs to environmental change. Org Geochem 35:1151–1167

    Article  CAS  Google Scholar 

  • Crusius J, Wanninkhof R (2003) Gas transfer velocities measured at low wind speed over a lake. Limnol Oceanogr 48:1010–1017

    Article  Google Scholar 

  • DEW (2004) Deutsche Einheitsverfahren zur Wasseruntersuchung. Wiley-VCH, New York

  • Dickens GR (2003) Rethinking the global carbon cycle with a large, dynamic and microbially mediated gas hydrate capacitor. Earth Planet Sci Lett 213:169–183

    Article  CAS  Google Scholar 

  • Diem T, Koch S, Schwarzenbach S, Wehrli B, Schubert CJ (2008) Greenhouse gas emissions (CO2, N2O, CH4) from perialpine and alpine hydropower reservoirs. Biogeosci Discuss 5:3699–3738

    Article  Google Scholar 

  • Eller G, Kanel LK, Krüger M (2005) Cooccurrence of aerobic and anaerobic methane oxidation in the water column of lake Plusssee. Appl Environ Microbiol 71:8925–8928

    Article  CAS  PubMed  Google Scholar 

  • Ettwig KF, Shima S, van de Pas-Schoonen KT, Kahnt J, Medema MH, op den Camp HJM et al (2008) Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea. Environ Microbiol 10:3164–3173

    Article  CAS  PubMed  Google Scholar 

  • Fenchel T, Blackburn TH (1979) Bacteria and mineral cycling. Academic Press, London

    Google Scholar 

  • Hinrichs K-U, Boetius A (2002) The anaerobic oxidation of methane: new insights in microbial ecology and biogeochemistry. In: Wefer G, Billett D, Hebbeln D, Jørgensen B, Schlüter M, Van Weering T (eds) Ocean margin systems. Springer, Berlin, pp 457–477

    Google Scholar 

  • Hinrichs K-U, Hayes JM, Sylva SP, Brewert PG, DeLong EF (1999) Methane-consuming archaebacteria in marine sediments. Nature 398:802–805

    Article  CAS  PubMed  Google Scholar 

  • IPCC (2001) Climate change 2001: The Scientific Basis. Contribution of Working Group I to the third assessment report of the intergovernmental panel on climate change. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Cambridge University Press, Cambridge, 881 pp

  • Iversen N, Oremland RS, Klug MJ (1987) Big Soda Lake (Nevada).3. Pelagic methanogenesis and anaerobic methane oxidation. Limnol Oceanogr 32:804–814

    Article  CAS  Google Scholar 

  • Jørgensen BB (1982) Mineralization of organic matter in the sea bed; the role of sulphate reduction. Nature 296:643–645

    Article  Google Scholar 

  • Kemp P, Lee S, LaRoche J (1993) Estimating the growth rate of slowly growing marine bacteria from RNA content. J Appl Environ Microbiol 5:2594–2601

    Google Scholar 

  • Kennett JP, Cannariato KG, Hendy IL, Behl RJ (2000) Carbon isotopic evidence for methane hydrate instability during quaternary interstadials. Science 288:128–133

    Article  CAS  PubMed  Google Scholar 

  • Kohler H-P, Åhring B, Albella C, Ingvorsen K, Kewelsh H, Laczkó E et al (1984) Bacteriological studies on the sulfur cycle in the anaerobic part of the hypolimnion and in the surface sediments of Rotsee in Switzerland. FEMS Microbiol Lett 21:279–286

    CAS  Google Scholar 

  • Liss PS, Merlivat L (1986) Air-sea gas exchange rates: introduction and synthesis. In: Buat-Menard PE (ed) The role of air-sea exchange in geochemical cycling. Reidel, Dordrecht

    Google Scholar 

  • Liss PS, Slater PG (1974) Flux of gases across air–sea interface. Nature 247:181–184

    Article  CAS  Google Scholar 

  • Lucas FS, Hollibaugh JT (2001) Response of sediment bacterial assemblages to selenate and acetate amendments. Environ Sci Technol 35:528–534

    Article  CAS  PubMed  Google Scholar 

  • Lucas FS, Moureau B, Jourdie V, Heeb P (2005) Brood size modification affects plumage bacterial assemblages of European starlings. Mol Ecol 14:639–646

    Article  PubMed  Google Scholar 

  • Murase J, Sakai Y, Kametani A, Sugimoto A (2005) Dynamics of methane in mesotrophic Lake Biwa, Japan. Ecol Res 20:377–385

    Article  CAS  Google Scholar 

  • Muyzer G, Dewaal EC, Uitterlinden AG (1993) Profiling of complex microbial-populations by denaturing gradient gel-electrophoresis analysis of polymerase chain reaction-amplified genes-coding for 16S ribosomal-RNA. Appl Environ Microbiol 59:695–700

    CAS  PubMed  Google Scholar 

  • Nauhaus K, Boetius A, Kruger M, Widdel F (2002) In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area. Environ Microbiol 4:296–305

    Article  CAS  PubMed  Google Scholar 

  • Orphan VJ, House CH, Hinrichs KU, McDeegan KD, Delong EF (2002) Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments. Proc Natl Acad Sci USA 99:7663–7668

    Article  CAS  PubMed  Google Scholar 

  • Pancost RD, Damste JSS, de Lint S, van der Maarel M, Gottschal JC (2000) Biomarker evidence for widespread anaerobic methane oxidation in Mediterranean sediments by a consortium of methanogenic archaea and bacteria. Appl Environ Microbiol 66:1126–1132

    Article  CAS  PubMed  Google Scholar 

  • Panganiban AT, Patt T, Hart W, Hanson RS (1979) Oxidation of methane in the absence of oxygen in lake water samples. Appl Environ Microbiol 37:303–309

    CAS  PubMed  Google Scholar 

  • Pernthaler A, Preston CM, Pernthaler J, DeLong EF, Amann R (2002) Comparison of fluorescently labeled oligonucleotide and polynucleotide probes for the detection of pelagic marine bacteria and archaea. Appl Environ Microbiol 68:661–667

    Article  CAS  PubMed  Google Scholar 

  • Raghoebarsing AA, Pol A, van de Pas-Schoonen KT, Smolders AJP, Ettwig KF, Rijpstra WIC et al (2006) A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440:918–921

    Article  CAS  PubMed  Google Scholar 

  • Rahalkar M, Deutzmann J, Schink B, Bussmann I (2009) Abundance and activity of methanotrophic bacteria in littoral and profundal sediments of Lake Constance (Germany). Appl Environ Microbiol 75:119–126

    Article  CAS  PubMed  Google Scholar 

  • Rasband WS (1997–2005) ImageJ, US National Institutes of Health, Bethesda, Maryland, USA. http://rsb.info.nih.gov/ij/

  • Rasmussen RA, Khalil MAK (1984) Atmospheric methane in the recent and ancient atmospheres: concentrations, trends, and interhemispheric gradient. J Geophys Res 89:1599–1605

    Article  Google Scholar 

  • Reeburgh WS, Ward BB, Whalen SC, Sandbeck KA, Kilpatrick KA, Kerkhof LJ (1991) Black Sea methane geochemistry. Deep Sea Res 38(Suppl 2):1189–1210

    Google Scholar 

  • Rudd JWM, Hamilton RD (1975) Factors controlling rates of methane oxidation and distribution of methane oxidizers in a small stratified lake. Arch Hydrobiol 75:522–538

    CAS  Google Scholar 

  • Saarnio S, Winiwarter W, Leitão J (2009) Methane release from wetlands and watercourses in Europe. Atmos Environ 43:1421–1429

    Article  CAS  Google Scholar 

  • Schmid M, Halbwachs M, Wehrli B, Wuest A (2005) Weak mixing in Lake Kivu: new insights indicate increasing risk of uncontrolled gas eruption. Geochem Geophys Geosyst 6:1–11

    Google Scholar 

  • Schoell M (1988) Multiple origins of methane in the earth. Chem Geol 71:1–10

    Article  CAS  Google Scholar 

  • Schubert CJ, Coolen M, Neretin L, Schippers A, Abbas B, Durisch-Kaiser E, Wehrli B, Hopmans E, Sinninghe Damsté J, Wakeham S, Kuypers MMM (2006) Anaerobic and aerobic methanotrophs in the Black Sea water column. Environ Microbiol 8(10):1844–1856

    Article  CAS  PubMed  Google Scholar 

  • St. Louis VL, Kelly CA, Duchemin E, Rudd JWM, Rosenberg DM (2000) Reservoir surfaces as sources of greenhouse gases to the atmosphere: a global estimate. Bioscience 50:766–775

    Article  Google Scholar 

  • Stevens CM, Wahlen M (2000) The isotopic composition of atmospheric methane and its sources. In: Khalil MAK (ed) Atmospheric methane. Springer, Berlin, pp 25–41

    Google Scholar 

  • Sundh I, Bastviken D, Tranvik LJ (2005) Abundance, activity and community structure of pelagic methane-oxidizing bacteria in temperate lakes. Appl Environ Microbiol 71:6746–6752

    Article  CAS  PubMed  Google Scholar 

  • Ward BB, Kilpatrick KA, Novelli PC, Scranton MI (1987) Methane oxidation and methane fluxes in the ocean surface layer and deep anoxic waters. Nature 327:226–229

    Article  CAS  Google Scholar 

  • Wetzel RG (1983) Limnology, 2nd edn. W. B. Saunders Co., Philadelphia, PA

    Google Scholar 

  • Wuebbles DJ, Hayhoe K (2002) Atmospheric methane and global change. Earth Sci Rev 57:177–210

    Article  CAS  Google Scholar 

  • Zehnder AJB, Brock TD (1979) Methane formation and methane oxidation by methanogenic bacteria. J Bacteriol 137:420–432

    CAS  PubMed  Google Scholar 

  • Zehnder AJB, Brock TD (1980) Anaerobic methane oxidation—occurrence and ecology. Appl Environ Microbiol 39:194–204

    CAS  PubMed  Google Scholar 

  • Zepp Falz K, Holliger C, Grosskopf R, Liesack W, Nozhevnikova AN, Müller B, Wehrli B, Hahn D (1999) Vertical distribution of methanogens in the anoxic sediment of Rotsee (Switzerland). Appl Environ Microbiol 65(6):2402–2408

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to two dedicated reviewers that helped improve the manuscript. Martin Schmid is acknowledged for the estimation of eddy diffusion coefficients, Michael Schurter is thanked for help during field work and Esther Aquilar for FISH analysis. Alfred Wüest is thanked for letting us work in silence and taking away the administrative burden. Funding was provided by internal Eawag funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. J. Schubert.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00027-010-0178-z

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schubert, C.J., Lucas, F.S., Durisch-Kaiser, E. et al. Oxidation and emission of methane in a monomictic lake (Rotsee, Switzerland). Aquat. Sci. 72, 455–466 (2010). https://doi.org/10.1007/s00027-010-0148-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00027-010-0148-5

Keywords

Navigation