Skip to main content

Advertisement

Log in

Greenhouse gas emissions (CO2, CH4, and N2O) from several perialpine and alpine hydropower reservoirs by diffusion and loss in turbines

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

We investigated greenhouse gas emissions (CO2, CH4, and N2O) from reservoirs located across an altitude gradient in Switzerland. These are the first results of greenhouse gas emissions from reservoirs at high elevations in the Alps. Depth profiles were taken in 11 reservoirs located at different altitudes between the years 2003 and 2006. Diffusive trace gas emissions were calculated using surface gas concentrations, wind speeds and transfer velocities. Additionally, methane entering with the inflowing water and methane loss at the turbine was assessed for a subset of the reservoirs. All reservoirs were emitters of carbon dioxide and methane with an average of 970 ± 340 mg m−2 day−1 (results only from four lowland and one subalpine reservoir) and 0.20 ± 0.15 mg m−2 day−1, respectively. One reservoir (Lake Wohlen) emitted methane at a much higher rate (1.8 ± 0.9 mg m−2 day−1) than the other investigated reservoirs. There was no significant difference in methane emissions across the altitude gradient, but average dissolved methane concentrations decreased with increasing elevation. Only lowland reservoirs were sources for N2O (72 ± 22 μg m−2 day−1), while the subalpine and alpine reservoirs were in equilibrium with atmospheric concentrations. These results indicate reservoirs from subalpine/alpine regions to be only minor contributors of greenhouse gases to the atmosphere compared to other reservoirs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abril G, Richard S, Guérin F (2006) In situ measurements of dissolved gases (CO2 and CH4) in a wide range of concentrations in a tropical reservoir using an equilibrator. Sci Total Environ 354:246–251

    Article  PubMed  CAS  Google Scholar 

  • Barbieri A, Veronesi M, Simona M, Malusardi S, Straškrabová (1999) Limnological survey in eight high mountain lakes located in Lago Maggiore watershed (Switzerland). J Limnol 58(2):179–192

    Article  Google Scholar 

  • Bárcena TG, Yde JC, Finster KW (2010) Methane flux and high-affinity methanotrophic diversity along the chronosequence of a receding glacier in Greenland. Ann Glaciol 51(56):23–31

    Article  Google Scholar 

  • Barker JF, Fritz P (1981) Carbon isotope fractionation during microbial methane oxidation. Nature 293:289–291

    Article  CAS  Google Scholar 

  • Barros N, Cole JJ, Tranvik LJ, Prairie YT, Bastviken D, Huszar VLM, del Giorgio P, Roland F (2011) Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. Nat Geosci 4:593–596

    Article  CAS  Google Scholar 

  • Bastviken D, Cole J, Pace M, Tranvik L (2004) Methane emissions from lakes: dependence of lake characteristics, two regional assessments, and a global estimate. Glob Biogeochem Cycles 18:GB4009

    Google Scholar 

  • Casper P (1996) Methane production in littoral and profundal sediments of an oligotrophic and eutrophic lake. Adv Limnol 48:253–259

    CAS  Google Scholar 

  • Cole JJ, Caraco NF (1998) Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6. Limnol Oceanogr 43:647–656

    Article  CAS  Google Scholar 

  • Crusius J, Wanninkhof R (2003) Gas transfer velocities measured at low wind speed over a lake. Limnol Oceanogr 48:1010–1017

    Article  Google Scholar 

  • de Angelis MA, Lilley MD (1987) Methane in surface waters of Oregon estuaries and rivers. Limnol Oceanogr 32:716–722

    Article  Google Scholar 

  • Delmas R, Galy-Lacaux C, Richard S (2001) Emissions of greenhouse gases from the tropical hydroelectric reservoir of Petit Saut (French Guiana) compared with emissions from thermal alternatives. Glob Biogeochem Cycles 15:993–1003

    Article  CAS  Google Scholar 

  • DelSontro TS, McGinnis DF, Sobek S, Ostrovsky I, Wehrli B (2010) Extreme methane emission from a swiss hydropower reservoir: contribution from bubbling sediments. Environ Sci Technol 44(7):2419–2425

    Article  PubMed  CAS  Google Scholar 

  • Duchemin E, Lucotte M, Canuel R, Chamberland A (1995) Production of the greenhouse gases CH4 and CO2 by hydroelectric reservoirs of the Boreal region. Glob Biogeochem Cycles 9:529–540

    Article  CAS  Google Scholar 

  • Duchemin E, Lucotte M, Canuel R (1999) Comparison of static chamber and thin boundary layer equation methods for measuring greenhouse gas emissions from large water bodies. Environ Sci Technol 33:350–357

    Article  CAS  Google Scholar 

  • Duchemin E, Lucotte M, Canuel R, Soumis N (2006) First assessment of methane and carbon dioxide emissions from shallow and deep zones of boreal reservoirs upon ic break-up. Lakes Reserv Res Manag 11:9–19

    Article  CAS  Google Scholar 

  • Eppley RW (1972) Temperature and phytoplankton growth in the sea. Fish Bull 70:1063–1085

    Google Scholar 

  • Fearnside PM (1997) Greenhouse-gas emissions from Amazonian hydroelectric reservoirs: the example of Brazil’s Tucuruí Dam as compared to fossil fuel alternatives. Environ Conserv 24:64–75

    Article  CAS  Google Scholar 

  • Fearnside PM (2002) Greenhouse gas emissions from a hydroelectric reservoir (Brazil’s Tucuruí Dam) and the energy policy implications. Water Air Soil Pollut 133:69–96

    Article  CAS  Google Scholar 

  • Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Van Dorland R (2007) Changes in atmospheric constituents and radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  • Galy-Lacaux C, Delmas R, Kouadio G, Richard S, Gosse P (1999) Long-term greenhouse gas emissions from hydroelectric reservoirs in tropical forest regions. Glob Biogeochem Cycles 13:503–517

    Article  CAS  Google Scholar 

  • Guérin F, Abril G, Richard S, Burban B, Reynouard C, Seyler P, Delmas R (2006) Methane and carbon dioxide emissions from tropical reservoirs: Significance of downstream rivers. Geophys Res Lett 33:L21407. doi:10.1029/2006GL027929

    Article  Google Scholar 

  • Hinder B, Gabathuler M, Steiner B, Hanselmann K, Preisig HR (1999) Seasonal dynamics and phytoplankton diversity in high mountain lakes (Jöri Lakes, Swiss Alps). J Limnol 58(2):152–161

    Google Scholar 

  • Huttunen JT, Väisänen TS, Hellsten SK, Heikkinen M, Nykänen H, Jungner H, Niskanen A, Virtanen MO, Lindqvist OV, Nenonen OS, Martikainen PJ (2002) Fluxes of CH4, CO2, and N2O in hydroelectric reservoirs Lokka and Porttipahta in the northern boreal zone in Finland. Glob Biogeochem Cycles 16(1):1003. doi:10.1029/2000GB001316

    Article  Google Scholar 

  • Huttunen JT, Juutinen S, Alm J, Larmola T, Hammar T, Silvola J, Martikainen PJ (2003a) Nitrous oxide flux to the atmosphere from the littoral zone of a boreal lake. J Geophys Res Atmos 108(D14):4421. doi:10.1029/2002JD002989

    Google Scholar 

  • Huttunen JT, Alm J, Liikanen A, Juutinen S, Larmola T, Hammar T, Silvola J , Martikainen PJ (2003b) Fluxes of methane, carbon dioxide and nitrous oxide in boreal lakes and potential anthropogenic effects on the aquatic greenhouse gas emissions. Chemosphere 52:609–621

    Google Scholar 

  • Kankaala P, Taipale S, Nykänen H, Jones RI (2007) Oxidation, efflux, and isotopic fractionation of methane during autumnal turnover in a polyhumic, boreal lake. J Geophys Res 112:G02003

    Article  Google Scholar 

  • Kelly CA, Chynoweth DP (1981) The contributions of temperature and of the input of organic matter in controlling rates of sediment methanogenesis. Limnol Oceanogr 26(5):891–897

    Article  CAS  Google Scholar 

  • Kelly CA, Rudd JWM, St. Louis VL, Moore T (1994) Turning attention to reservoir surfaces, a neglected area in greenhouse studies. EOS 75:332–333

    Article  Google Scholar 

  • Kelly CA, Rudd JWM, Bodaly RA, Roulet NP, St.Louis VL, Heyes A, Moore TR, Schiff S, Aravena R, Scott KJ, Dyck B, Harris R, Warner B, Edwards G (1997) Increases in fluxes of greenhouse gases and methyl mercury following flooding of an experimental reservoir. Environ Sci Technol 31:1334–1344

    Google Scholar 

  • Kemenes A, Forsberg BR, Melack JM (2007) Methane release below a tropical hydroelectric dam. Geophys Res Lett 34:L12809. doi:10.1029/2007GL029479

    Article  Google Scholar 

  • Knox M, Quay PD, Wilbur D (1992) Kinetic isotopic fractionation during air–water gas transfer of O2, N2, CH4, and H2. J Geophys Res Oceans 97:20335–20343

    Article  Google Scholar 

  • Kosten S, Roland F, Da Motta Marques DML, Van Nes EH, Mazzeo N, Sternberg LdaSL, Scheffer M, Cole JJ (2010) Climate-dependent CO2 emissions from lakes. Glob Biogeochem Cycles 24: GB2007. doi:10.1029/2009GB003618

  • Kuivila KM, Murray JW, Devol AH, Lidstrom ME, Reimers CE (1988) Methane cycling in the sediments of Lake Washington. Limnol Oceanogr 33:571–581

    Article  CAS  Google Scholar 

  • Liss PS, Merlivat L (1986) Air-sea gas exchange rates: Introduction and synthesis. In: Buat-Menard PE (ed) The role of air-sea exchange in geochemical cycling. Reidel, Dordrecht

    Google Scholar 

  • Liss PS, Slater PG (1974) Flux of gases across air–sea interface. Nature 247:181–184

    Article  CAS  Google Scholar 

  • Maberly SC (1996) Diel, episodic and seasonal changes in pH and concentrations of inorganic carbon in a productive lake. Freshw Biol 35:579–598

    Article  CAS  Google Scholar 

  • McAuliffe C (1971) GC determination of solutes by multiple phase equilibration. Chem Technol 1:46–51

    Google Scholar 

  • Mengis M, Gächter R, Wehrli B (1996) Nitrous oxide emissions to the atmosphere from an artificially oxygenated lake. Limnol Oceanogr 41:548–553

    Article  CAS  Google Scholar 

  • Michmerhuizen CM, Striegl RG, McDonald ME (1996) Potential methane emissions from north-temperate lakes following ice melt. Limnol Oceanogr 41(5):985–991

    Article  CAS  Google Scholar 

  • Miller WL, Moran MA (1997) Interaction of photochemical and microbial processes in the degradation of refractory dissolved organic matter from a coastal marine environment. Limnol Oceanogr 42(6):1317–1324

    Article  CAS  Google Scholar 

  • Murase J, Sakai Y, Kametani A, Sugimoto A (2005) Dynamics of methane in mesotrophic Lake Biwa, Japan. Ecol Res 20:377–385

    Article  CAS  Google Scholar 

  • Neal C, House WA, Down K (1998) An assessment of excess carbon dioxide partial pressures in natural waters based in pH and alkalinity measurements. Sci Total Environ 210(211):173–185

    Article  Google Scholar 

  • Nguyen TD, Crill P, Bastviken D (2010) Implications of temperature and sediment characteristics on methane formation and oxidation in lake sediments. Biogeochemistry 100(185):196

    Google Scholar 

  • Pacca S, Horvath A (2002) Greenhouse gas emissions from building and operating electric power plants in the upper Colorado River Basin. Environ Sci Technol 36:3194–3200

    Article  PubMed  CAS  Google Scholar 

  • Plummer LN, Busenberg E (1982) The solubilities of calcite, Aragonite and Vaterite in Co2–H2O solutions between 0 and 90°C, and an evaluation of the aqueous model for the system CaCO3–CO2–H2O. Geochim Cosmochim Acta 46:1011–1040

    Article  CAS  Google Scholar 

  • Price PB (2007) Microbial life in glacial ice and implications for a cold origin of life. FEMS Microbiol Ecol 59:217–231

    Article  PubMed  CAS  Google Scholar 

  • Roehm C, Tremblay A (2006) Role of turbines in the carbon dioxide emissions from two boreal reservoirs, Québec, Canada. J Geophys Res 111:D24101

    Article  Google Scholar 

  • Rudd JWM, Furutani A, Flett RJ, Hamilton RD (1976) Factors controlling methane oxidation in shield lakes: the role of nitrogen fixation and oxygen concentration. Limnol Oceanogr 21:357–364

    Article  CAS  Google Scholar 

  • Rudd JWM, Harris R, Kelly CA, Hecky RE (1993) Are hydroelectric reservoirs significant sources of greenhouse gases? Ambio 22:246–248

    Google Scholar 

  • Sansone FJ, Popp BN, Rust TM (1997) Stable carbon isotopic analysis of low-level methane in water and gas. Anal Chem 69:40–44

    Article  CAS  Google Scholar 

  • Sommaruga R, Psenner R, Schafferer E, Koinig KA, Sommaruga-Wögrath S (1999) Dissolved organic carbon concentration and phytoplankton biomass in high-mountain lakes of the Austrian Alps: potential effect of climatic warming on UV underwater attenuation. Arct Antarct Alp Res 31(3):247–253

    Article  Google Scholar 

  • Soumis N, Duchemin E, Canuel R, Lucotte M (2004) Greenhouse gas emissions from reservoirs of the western United States. Glob Biogeochem Cycles 18:GB3022

    Google Scholar 

  • Soumis N, Lucotte M, Larose C, Veilette F, Canuel R (2007) Photomineralization in a boreal hydroelectric reservoir: a comparison with natural aquatic ecosystems. Biogeochemistry 86(2):123–135

    Article  CAS  Google Scholar 

  • St. Louis VL, Kelly CA, Duchemin E, Rudd JWM, Rosenberg DM (2000) Reservoir surfaces as sources of greenhouse gases to the atmosphere: a global estimate. Bioscience 50:766–775

    Article  Google Scholar 

  • Thebrath B, Rothfuss F, Whiticar MJ, Conrad R (1993) Methane production in littoral sediment of Lake Constance. FEMS Microbiol Ecol 102:279–289

    Article  CAS  Google Scholar 

  • Tremblay A, Therrien J, Hamlin B, Wichmann E, LeDrew LJ (2005) GHG emissions from boreal reservoirs and natural aquatic ecosystems. In: Tremblay A, Varfalvy L, Roehm C, Garneau M (eds) Greenhouse gas emissions—fluxes and processes. Springer, Berlin

    Chapter  Google Scholar 

  • Tung HC, Bramali NE, Price PB (2005) Microbial origin of excess methane in glacial ice and implications for life on Mars. Proc Nat Acad Sci USA 102(51):18292–18296

    Article  PubMed  CAS  Google Scholar 

  • Upstill-Goddard RC, Barnes J, Frost T, Punshon S, Owens NJP (2000) Methane in the southern North Sea: low-salinity inputs, estuarine removal, and atmospheric flux. Glob Biogeochem Cycles 14:1205–1217

    Article  CAS  Google Scholar 

  • Wadham JL, Tranter M, Tulaczyk S, Sharp M (2008) Subglacial methanogenesis: a potential climatic amplifier? Glob Biogeochem Cycles 22:GB2021

    Google Scholar 

  • Wanninkhof R (1992) Relationship between wind speed and gas exchange over the Ocean. J Geophys Res 97:7373–7382

    Article  Google Scholar 

  • Weiss RF (1974) Carbon dioxide in water and sewater: the solubility of a non-ideal gas. Mar Chem 2:203–215

    Article  CAS  Google Scholar 

  • Weiss RF, Price BA (1980) Nitrous oxide solubility in water and seawater. Mar Chem 8:347–359

    Article  CAS  Google Scholar 

  • Whiticar MJ (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem Geol 161:291–314

    Article  CAS  Google Scholar 

  • Wiesenburg DA, Guinasso NL (1979) Equilibrium solubilities of methane, carbon-monoxide, and hydrogen in water and sea water. J Chem Eng Data 24:356–360

    Article  CAS  Google Scholar 

  • Zeikus JG, Winfrey MR (1976) Temperature limitations of methanogenesis in aquatic sediments. Appl Environ Microbiol 31(1):99–107

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank MeteoSchweiz for supplying wind speed data. Funding by internal EAWAG funds is gratefully acknowledged. Additionally we would like to thank Markus Fette, Michael Schurter, Michael Meyer, Ilia Ostrovsky, David Finger and Lorenz Jaun for their assistance during sampling. And finally two anonymous reviewers for their helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Diem.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diem, T., Koch, S., Schwarzenbach, S. et al. Greenhouse gas emissions (CO2, CH4, and N2O) from several perialpine and alpine hydropower reservoirs by diffusion and loss in turbines. Aquat Sci 74, 619–635 (2012). https://doi.org/10.1007/s00027-012-0256-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00027-012-0256-5

Keywords

Navigation