Skip to main content
Log in

Feedback stabilization of a class of evolution equations with delay

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

In this paper, we characterize the stabilization of some delay systems. The proof of the main result uses the method introduced in Ammari and Tucsnak (ESAIM COCV 6:361–386, 2001) where the exponential stability for the closed loop problem is reduced to an observability estimate for the corresponding uncontrolled system combined with a boundedness property of the transfer function of the associated open loop system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ammari K. and Tucsnak M. (2001). Stabilization of second order evolution equations by a class of unbounded feedbacks. ESAIM COCV. 6: 361–386

    Article  MATH  MathSciNet  Google Scholar 

  2. Ammari K. and Khenissi M. (2005). Decay rates of the plate equations. Math. Nachr. 278: 1647–1658

    Article  MATH  MathSciNet  Google Scholar 

  3. Ammari K. and Tucsnak M. (2000). Stabilization of Bernoulli-Euler beams by means of a pointwise feedback force. SIAM J. Control. Optim. 39: 1160–1181

    Article  MATH  MathSciNet  Google Scholar 

  4. Ammari K. and Tucsnak M. (2001). Asymptotic behaviour of the solutions and optimal location of the actuator for the pointwise stabilization of a string. Asy. Anal. 28: 215–240

    MATH  MathSciNet  Google Scholar 

  5. Ammari K., Liu Z. and Tucsnak M. (2002). Decay rates for a beam with pointwise force and moment feedback, Mathematics of Control. Signals, and Systems 15: 229–255

    MATH  MathSciNet  Google Scholar 

  6. Ammari K. (2002). Dirichlet boundary stabilization of the wave equation. Asy. Anal. 30: 117–130

    MATH  MathSciNet  Google Scholar 

  7. Bátkai A., Piazzera S., Damped wave equations with delay, Topics in functional differential and difference equations (Lisbon, 1999), 51–61, Fields Inst. Commun., 29, Amer. Math. Soc., Providence, RI, 2001.

  8. Bátkai, A., Second Order Cauchy Problems with damping delay, Thesis, Tübingen 2000.

  9. Bardos C., Lebeau G. and Rauch J. (1992). Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary. SIAM J. Control. Optim. 30: 1024–1065

    Article  MATH  MathSciNet  Google Scholar 

  10. Bardos C., Halpern L., Lebeau G., Rauch J. and Zuazua E. (1991). Stabilisation de l’équation des ondes au moyen d’un feedback portant sur la condition aux limites de Dirichlet. Asy. Anal. 4: 285–291

    MATH  MathSciNet  Google Scholar 

  11. Benavides Guzman R. and Tucsnak M. (2003). Energy decay estimates for the damped plate equation with a local degenerated dissipation. Systems Control Lett. 48: 191–197

    Article  MATH  MathSciNet  Google Scholar 

  12. Chen G. (1979). Control and stabilization for the wave equation in a bounded domain, Part I. SIAM J. Control Optim. 17: 66–81

    Article  MATH  MathSciNet  Google Scholar 

  13. Chen G. (1981). Control and stabilization for the wave equation in a bounded domain, Part II. SIAM J. Control Optim. 19: 114–122

    Article  MATH  MathSciNet  Google Scholar 

  14. Datko R. (1988). Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks. SIAM J. Control Optim. 26: 697–713

    Article  MATH  MathSciNet  Google Scholar 

  15. Datko R. (1997). Two examples of ill-posedness with respect to time delays revisited. IEEE Trans. Automat. Control. 42: 511–515

    Article  MATH  MathSciNet  Google Scholar 

  16. Datko R., Lagnese J. and Polis M.P. (1986). An example on the effect of time delays in boundary feedback stabilization of wave equations. SIAM J. Control Optim. 24: 152–156

    Article  MATH  MathSciNet  Google Scholar 

  17. Engel J.K. (1994). dissipative wave equations in Hilbert space. J. Math. Anal. Appl. 184: 302–316

    Article  MATH  MathSciNet  Google Scholar 

  18. Ingham A.E. (1936). Some trigonometrical inequalities with applications in the theory of series. Math. Z. 41: 367–369

    Article  MathSciNet  Google Scholar 

  19. Lagnese J. (1983). Decay of solutions of the wave equations in a bounded region with boundary dissipation. J. Differential Equations 50: 163–182

    Article  MATH  MathSciNet  Google Scholar 

  20. Lagnese J. (1988). Note on boundary stabilization of wave equations. SIAM J. Control and Optim. 26: 1250–1256

    Article  MATH  MathSciNet  Google Scholar 

  21. Lasiecka I. and Triggiani R. (1987). Uniform exponential energy decay of wave equations in a bounded region with L 2(0,T;L 2(Γ))-feedback control in the Dirichlet boundary conditions. J. Differential Equations 66: 340–390

    Article  MATH  MathSciNet  Google Scholar 

  22. Komornik V. (1991). Rapid boundary stabilization of the wave equation. SIAM J. Control Optim. 29: 197–208

    Article  MATH  MathSciNet  Google Scholar 

  23. Komornik, V., Exact Controllability and Stabilization. The Multiplier Method, RAM: Res. Appl. Math. 36, Masson, Paris; John Wiley, Chichester, 1994.

  24. Komornik V. and Zuazua E. (1990). A direct method for the boundary stabilization of the wave equation. J. Math. Pures Appl. 69: 33–54

    MATH  MathSciNet  Google Scholar 

  25. Nicaise S. and Pignotti C. (2006). Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks. SIAM J. Control Optim. 45: 1561–1585

    Article  MATH  MathSciNet  Google Scholar 

  26. Nicaise S. and Valein J. (2007). Stabilization of the wave equation on 1-d networks with a delay term in the nodal feedbacks. Netw. Heterog. Media 2: 425–479

    MATH  MathSciNet  Google Scholar 

  27. Rebarber R. (1995). Exponential stability of beams with dissipative joints: a frequency domain approach. SIAM J. Control Optim. 33: 1–28

    Article  MATH  MathSciNet  Google Scholar 

  28. Tucsnak M. (1996). Regularity and exact controllability for beam with piezoelectric actuator. SIAM J. control Optim. 34: 922–930

    Article  MATH  MathSciNet  Google Scholar 

  29. Xu G.Q., Yung S.P. and Li L.K. (2006). Stabilization of wave systems with input delay in the boundary control. ESAIM Control Optim. Calc. Var. 12: 770–785

    Article  MATH  MathSciNet  Google Scholar 

  30. Zuazua E. (1990). Exponential decay for the semi-linear wave equation with locally distributed damping. Comm. Partial Differential Equations 15: 205–235

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Maniar.

Additional information

The author would like to thank the Institute of Research for Development of France (IRD) and LMDP, the Laboratory of Mathematics and Dynamic of Populations in Marrakesh, for supporting his visit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ait Benhassi, E.M., Ammari, K., Boulite, S. et al. Feedback stabilization of a class of evolution equations with delay. J. Evol. Equ. 9, 103–121 (2009). https://doi.org/10.1007/s00028-009-0004-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-009-0004-z

Mathematics Subject Classification (2000)

Keywords

Navigation