Skip to main content
Log in

On the coupling property and the Liouville theorem for Ornstein–Uhlenbeck processes

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

Using a coupling for the weighted sum of independent random variables and the explicit expression of the transition semigroup of Ornstein–Uhlenbeck processes driven by compound Poisson processes, we establish the existence of a successful coupling and the Liouville theorem for general Ornstein–Uhlenbeck processes. Then we present the explicit coupling property of Ornstein–Uhlenbeck processes directly from the behaviour of the corresponding symbol or characteristic exponent. This approach allows us to derive gradient estimates for Ornstein–Uhlenbeck processes via the symbol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aliprantis C.D., Burkinshaw O.: Principles of Real Analysis (3rd ed.). Academic Press, San Diego, California (1998)

    MATH  Google Scholar 

  2. Bernstein D.S.: Matrix Mathematics: Theory, Facts, and Formulas with Application to Linear Systems Theory. Princeton University Press, Princeton (2005)

    MATH  Google Scholar 

  3. Cranston M., Greven A.: Coupling and harmonic functions in the case of continuous time Markov processes. Stoch. Proc. Appl. 60, 261–286 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cranston, M. and Wang, F.-Y.: A condition for the equivalence of coupling and shift-coupling, Ann. Probab. 28 (2000), 1666–1679.

    Article  MathSciNet  MATH  Google Scholar 

  5. Lindvall T.: Lectures on the Coupling Method. Wiley, New York (1992)

    MATH  Google Scholar 

  6. Nourdin I., Simon T.: On the absolute continuity of Lévy processes with drift. Ann. Probab. 34, 1035–1051 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Priola E., Zabczyk J.: Liouville theorems for non-local operators. J. Funct. Anal. 216, 455–490 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Priola E., Zabczyk J.: Densities for Ornstein–Uhlenbeck processes with jumps. Bull. London Math. Soc. 41, 41–50 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Sato K., Yamazato M.: Operator-self-decomposable distributions as limit distributions of processes of Ornstein–Uhlenbeck type. Stoch. Proc. Appl. 17, 73–100 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  10. Sato K.: Lévy processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  11. Schilling R.L.: Measures, Integrals and Martingales. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  12. Schilling, R.L., Sztonyk, P., and Wang J.: Coupling property and gradient estimates of Lévy processes via symbol, to appear in Bernoulli, 2011. See also arXiv 1011.1067

  13. Schilling, R.L. and Wang, J.: On the coupling property of Lévy processes, to appear in Ann. Inst. Henri Poincaré: Probab. Stat. 47 (2011), 1147–1159. See also arXiv 1006.5288

  14. Stroock D.W.: A Concise Introducation to the Theory of Integration (2nd ed.). Birkhäuser, Boston (1994)

    Google Scholar 

  15. Thorisson H.: Coupling, Stationarity and Regeneration. Springer, New York (2000)

    Book  MATH  Google Scholar 

  16. Wang, F.-Y.: Coupling for Ornstein–Uhlenbeck jump processes, to appear in Bernoulli. 17 (2011), 1136–1158. See also arXiv:1002.2890v5

  17. Wang F.-Y.: Gradient estimate for Ornstein–Uhlenbeck jump processes. Stoch. Proc. Appl. 121, 466–478 (2011)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schilling, R.L., Wang, J. On the coupling property and the Liouville theorem for Ornstein–Uhlenbeck processes. J. Evol. Equ. 12, 119–140 (2012). https://doi.org/10.1007/s00028-011-0126-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-011-0126-y

Mathematics Subject Classification (2000)

Keywords

Navigation