Skip to main content
Log in

Screening operators for \(\mathcal {W}\)-algebras

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

Let \(\mathfrak {g}\) be a simple finite-dimensional Lie superalgebra with a non-degenerate supersymmetric even invariant bilinear form, f a nilpotent element in the even part of \(\mathfrak {g}\), \(\Gamma \) a good grading of \(\mathfrak {g}\) for f and \(\mathcal {W}^{k}(\mathfrak {g},f;\Gamma )\) the (affine) \(\mathcal {W}\)-algebra associated with \(\mathfrak {g},f,k,\Gamma \) defined by the generalized Drinfeld–Sokolov reduction. In this paper, we present each \(\mathcal {W}\)-algebra as the intersection of kernels of the screening operators, acting on the tensor vertex superalgebra of an affine vertex superalgebra and a neutral free superfermion vertex superalgebra. As applications, we prove that the \(\mathcal {W}\)-algebra associated with a regular nilpotent element in \(\mathfrak {osp}(1,2n)\) is isomorphic to the \(\mathcal {W}B_{n}\)-algebra introduced by Fateev and Lukyanov, and that the \(\mathcal {W}\)-algebra associated with a subregular nilpotent element in \(\mathfrak {sl}_{n}\) is isomorphic to the \(\mathcal {W}^{(2)}_{n}\)-algebra introduced by Feigin and Semikhatov.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Afshar, H.R., Creutzig, T., Grumiller, D., Hikida, Y., Rønne, P.B.: Unitary W-algebras and three-dimensional higher spin gravities with spin one symmetry. J. High Energy Phys. 2014(6), 63 (2014). doi:10.1007/JHEP06(2014)063

  2. Arakawa, T.: Representation theory of superconformal algebras and the Kac–Roan–Wakimoto conjecture. Duke Math. J. 130(3), 435–478 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arakawa, T.: Representation theory of \({\fancyscript {W}}\)-algebras. Invent. Math. 169(2), 219–320 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arakawa, T.: Introduction to W-algebras and their representation theory. arXiv:1605.00138

  5. Arakawa, T., Kuwabara, T., Malikov, F.: Localization of affine W-algebras. Commun. Math. Phys. 335(1), 143–182 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bershadsky, M.: Conformal field theories via Hamiltonian reduction. Commun. Math. Phys. 139(1), 71–82 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brundan, J., Goodwin, S.M.: Good grading polytopes. Proc. Lond. Math. Soc. (3) 94(1), 155–180 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Collingwood, D.H., McGovern, W.M.: Nilpotent orbits in semisimple Lie algebras. Van nostrand reinhold mathematics series. Van Nostrand Reinhold Co, New York (1993)

    Google Scholar 

  9. De Sole, A., Kac, V.G.: Finite vs affine \(W\)-algebras. Jpn. J. Math. 1(1), 137–261 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. De Sole, A., Kac, V.G., Valeri, D.: Structure of classical (finite and affine) W-algebras. arXiv:1404.0715

  11. Elashvili, A.G. Kac, V.G.: Classification of good gradings of simple Lie algebras. In: Lie groups and invariant theory, pp 85–104. American Mathematical Society Translations Series 2, 213, American Mathematical Society, Providence, RI (2005)

  12. Fateev, V.A., Lukyanov, S.L.: Additional symmetries and exactly solvable models of two-dimensional conformal field theory. Sov. Sci. Rev. A. Phys. 15, 1–117 (1990)

    Google Scholar 

  13. Feigin, B.L.: Semi-infinite homology of Lie, Kac-Moody and Virasoro algebras. Uspekhi Mat. Nauk 39(2(236)), 195–196 (1984)

    MathSciNet  MATH  Google Scholar 

  14. Feigin, B.L., Frenkel, E.: Quantization of Drinfel’d–Sokolov reduction. Phys. Lett. B 246(1–2), 75–81 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  15. Feigin, B.L., Frenkel, E.: Affine Kac-Moody algebras at the critical level and Gel’fand–Dikii algebras. In: Infinite analysis, Part A, B. Kyoto (1991)

  16. Feigin, B.L., Semikhatov, A.M.: \({\cal{W}}^{(2)}_{n}\)-algebras. Nuclear Phys. B 698(3), 409–449 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Figueroa-O’Farrill, J.M., Ramos, E.: Classical \(N=1\,W\)-superalgebras from Hamiltonian reduction. Commun. Math. Phys. 145(1), 43–55 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Frenkel, E.: Wakimoto modules, opers and the center at the critical level. Adv. Math. 195(2), 279–327 (2004)

    MathSciNet  Google Scholar 

  19. Frenkel, E., Ben-Zvi, D.: Vertex algebras and algebraic curves, 2nd edn. In: Mathematical Surveys and Monographs, vol. 88. American Mathematical Society, Providence, RI (2004)

  20. Frenkel, E., Kac, V.G., Wakimoto, M.: Characters and fusion rules for \(W\)-algebras via quantized Drinfel’d–Sokolov reduction. Commun. Math. Phys. 147(2), 295–328 (1992)

    Article  MATH  Google Scholar 

  21. Fuchs, D.B.: Cohomology of Infinite-Dimensional Lie Algebras. Contemporary Soviet Mathematics. Consultants Bureau, New York (1986)

    Google Scholar 

  22. Hartshorne, R.: Algebraic geometry. In: Graduate Texts in Mathematics, vol. 52. Springer, New York (1977)

  23. Heluani, R., Rodríguez Díaz, L.O.: The Shatashvili–Vafa \(G_{2}\) superconformal algebra as a quantum Hamiltonian reduction of \(D(2,1;\alpha )\). Bull. Braz. Math. Soc. (N.S.) 46(3), 331–351 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hoyt, C.: Good gradings of basic Lie superalgebras. Isr. J. Math. 192(1), 251–280 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ito, K., Madsen, J.O., Petersen, J.L.: Free field representations of extended superconformal algebras. Nuclear Phys. B 398(2), 425–458 (1993)

    Article  MathSciNet  Google Scholar 

  26. Kac, V.G.: Lie superalgebras. Adv. Math. 26(1), 8–96 (1977)

    Article  MATH  Google Scholar 

  27. Kac, V.G.: Infinite-Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  28. Kac, V.G.: Vertex algebras for beginners, 2nd edn. In: University Lecture Series, 10. American Mathematical Society, Providence, RI (1998)

  29. Kac, V.G., Roan, S.-S., Wakimoto, M.: Quantum reduction for affine superalgebras. Commun. Math. Phys. 241(2–3), 307–342 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kac, V.G., Wakimoto, M.: Integrable highest weight modules over affine superalgebras and number theory. In: Lie Theory and Geometry, pp. 415–456, Progr. Math., 123, Birkhäuser Boston, Boston (1994)

  31. Kac, V.G., Wakimoto, M.: Quantum reduction and representation theory of superconformal algebras. Adv. Math. 185(2), 400–458 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kac, V.G., Wakimoto, M.: Corrigendum to: “quantum reduction and representation theory of superconformal algebras” [Adv. Math. 185, 400–458 (2004)]. Adv. Math. 193(2), 453–455 (2005)

    Article  MathSciNet  Google Scholar 

  33. Kostant, B.: Lie algebra cohomology and the generalized Borel–Weil theorem. Ann. Math. 2(74), 329–387 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  34. Li, H.: Vertex algebras and vertex Poisson algebras. Commun. Contemp. Math. 6(1), 61–110 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  35. Musson, I.M.: Lie superalgebras and enveloping algebras. In: Graduate Studies in Mathematics, vol. 131. American Mathematical Society, Providence, RI (2012)

  36. Polyakov, A.M.: Gauge transformations and diffeomorphisms. Int. J. Mod Phys A5(5), 833–842 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang, W.: Nilpotent orbits and \(W\)-algebras. In: Geometric representation theory and extended affine Lie algebras, pp. 71–105. Fields Inst. Commun. 59. American Mathematicla Society, Providence RI (2011)

  38. Watts, G.M.T.: \(W B_{n}\) symmetry, Hamiltonian reduction and \(B(0, n)\) Toda theory. Nuclear Phys. B 361(1), 311–336 (1991)

    Article  MathSciNet  Google Scholar 

  39. Zamolodchikov, A.B.: Infinite extra symmetries in two-dimensional conformal quantum field theory. Theor. Math. phys. 65(3), 347–359 (1985)

    Article  MathSciNet  Google Scholar 

  40. Zhu, Y.: Modular invariance of characters of vertex operator algebras. J. Am. Math. Soc. 9(1), 237–302 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoki Genra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Genra, N. Screening operators for \(\mathcal {W}\)-algebras. Sel. Math. New Ser. 23, 2157–2202 (2017). https://doi.org/10.1007/s00029-017-0315-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-017-0315-9

Keywords

Mathematics Subject Classification

Navigation