Skip to main content
Log in

Harish-Chandra pairs for algebraic affine supergroup schemes over an arbitrary field

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

Over an arbitrary field of characteristic ≠ 2, we define the notion of Harish-Chandra pairs, and prove that the category of those pairs is anti-equivalent to the category of algebraic affine supergroup schemes. The result is applied to characterize some classes of affine supergroup schemes such as those which are (a) simply connected, (b) unipotent or (c) linearly reductive in positive characteristic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Andruskiewitsch, M. Graña, Braided Hopf algebras over non-abelian finite groups, Bol. Acad. Ciencias 63 (1999), 45–78.

    MATH  Google Scholar 

  2. G. Bergman, The diamond lemma for ring theory, Adv. in Math. 29 (1978), 178–218.

    Article  MathSciNet  Google Scholar 

  3. F. A. Berezin, Introduction to Superanalysis, Reidel, Holland, 1989.

    Google Scholar 

  4. J. Brundan, A. Kleshchev, Modular representations of the supergroup Q(n) I, J. Algebra 260 (2003), 64–98.

    Article  MathSciNet  MATH  Google Scholar 

  5. H. Boseck, Affine Lie supergroups, Math. Nachr. 143 (1989), 303–327.

    Article  MathSciNet  MATH  Google Scholar 

  6. H. Boseck, Classical Lie supergroups, Math. Nachr. 148 (1990), 81–115.

    Article  MathSciNet  MATH  Google Scholar 

  7. C. Carmeli, L. Caston, R. Fioresi, Mathematical Foundations of Supersymmetry, EMS Series of Lectures in Mathematics, European Math. Soc., Zürich, 2011.

  8. C. Carmeli, R. Fioresi, Super distributions, analytic and algebraic super Harish-Chandra pairs, preprint, arXiv:1106.1072.

  9. P. Deligne, J.-W. Morgan, Notes on supersymmetry (following Joseph Bernstein), in: Quantum Fields and Strings: A Course for Mathematicians, Vols. 1, 2 (Princeton, NJ, 1996/1997), Amer. Math. Soc., Providence, 1999, pp. 41–97.

  10. M. Demazure, P. Gabriel, Groupes Algébriques, Tome I, Masson & Cie, Paris; North-Holland, Amsterdam, 1970.

  11. G. Hochschild, Algebraic groups and Hopf algebras, Illinois J. Math. 14 (1970), 52–65.

    MathSciNet  MATH  Google Scholar 

  12. B. Kostant, Graded manifolds, graded Lie theory, and prequantization, in: Differential Geometrical Methods in Mathematical Physics (Proc. Sympos., Univ. Bonn, Bonn, 1975), Lecture Notes in Mathematics, Vol. 570, Springer-Verlag, Berlin, 1977, pp. 177–306.

  13. J.-L. Koszul, Graded manifolds and graded Lie algebras, in: Proceedings of the International Meeting on Geometry and Physics (Florence, 1982), Pitagora, Bologna, 1982, pp. 71–84.

  14. Y. I. Manin, Gauge Fields Theory and Complex Geometry, Grundlehren der mathematischen Wissenschaften, Vol. 289, Springer-Verlag, Berlin, 1988.

  15. A. Masuoka, The fundamental correspondences in super affine groups and super formal groups, J. Pure Appl. Algebra 202 (2005), 284–312.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Masuoka, Semisimplicity criteria for finite-dimensional irreducible Hopf algebras in positive characteristic, Proc. Amer. Math. Soc. 137 (2009), 1925–1932.

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Masuoka, A. N. Zubkov, Quotient sheaves of algebraic supergroups are super-schemes, J. Algebra 348 (2011), 135–170.

    Article  MathSciNet  MATH  Google Scholar 

  18. S. Montgomery, Hopf Algebras and their Actions on Rings, CBMS Regional Conference Series in Mathematics, Vol. 82, Amer. Math. Soc., Providence, RI, 1993.

  19. M. E. Sweedler, Hopf Algebras, Benjamin, New York, 1969.

    Google Scholar 

  20. M. Takeuchi, Tangent coalgebras and hyperalgebras I, Jap. J. of Math. 42 (1974), 1–143.

    MATH  Google Scholar 

  21. M. Takeuchi, On coverings and hyperalgebras of affine algebraic groups, Trans. Amer. Math. Soc. 211 (1975), 249–275.

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Takeuchi, On coverings and hyperalgebras of affine algebraic groups, III, Amer. J. Math. 103 (1981), 181–202.

    Article  MathSciNet  MATH  Google Scholar 

  23. M. Takeuchi, Topological coalgebras, J. Algebra 97 (1985), 509–539.

    Article  Google Scholar 

  24. M. Takeuchi, Review of [15], MR2163412 (2006e:16066), Math. Reviews, Amer. Math. Soc., 2006.

  25. V. S. Varadarajan, Supersymmetry for Mathematicians: an Introduction, Courant Lect. Notes in Math., Vol. 11, Amer. Math. Soc, Providence, 2004.

  26. E. G. Vishnyakova, On complex Lie supergroups and homogeneous split supermanifolds, Transform. Groups 16 (2010), no.1, 265–285.

    Article  MathSciNet  Google Scholar 

  27. R. Weissauer, Semisimple algebraic tensor categories, preprint, arXiv:0909.1793.

  28. A. N. Zubkov, Affine quotients of supergroups, Transform. Groups 14 (2009), no.3, 713–745.

    Article  MathSciNet  MATH  Google Scholar 

  29. A. N. Zubkov, On quotients of affine superschemes over finite supergroups, J. Algebra and its Appl. 10 (2011), 391–408.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Masuoka.

Additional information

Dedicated to Margaret Beattie in honor of her distinguished career

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masuoka, A. Harish-Chandra pairs for algebraic affine supergroup schemes over an arbitrary field. Transformation Groups 17, 1085–1121 (2012). https://doi.org/10.1007/s00031-012-9203-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-012-9203-8

Keywords

Navigation