Skip to main content
Log in

Stability analysis of Rayleigh–Bénard convection in a porous medium

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper we study the problem of Rayleigh–Bénard convection in a porous medium. Assuming that the viscosity depends on both the temperature and pressure and that it is analytic in these variables we show that the Rayleigh–Bénard equations for flow in a porous media satisfy the idea of exchange of stabilities. We also show that the static conduction solution is linearly stable if and only if the Rayleigh number is less than or equal to a critical Rayleigh number. Finally, we show that a measure of the thermal energy of the fluid decays exponentially which in turn implies that the L2 norm of the perturbed temperature and velocity also decay exponentially.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bénard, H.: Les tourbillos cellulaires dans une nappe liquide. Revue Gén. Sci. pures et appl. 11:1261–1271, 1309–1328 (1900)

    Google Scholar 

  2. Boussinesq J.: Théorie Analytique de la Chaleur. Gauthier-Villars, Paris (1903)

    Google Scholar 

  3. Bridgman P.W.: The Physics of High Pressure. MacMillan, New York (1931)

    Google Scholar 

  4. Chandrasekhar S.: Hydrodynamic and Hydromagnetic Stability. Clarendon Press, Oxford (1961)

    MATH  Google Scholar 

  5. Hron J., Malek J., Rajagopal K.R.: Simple flows of fluids with pressure-dependent viscosities. Proc. R. Soc. Lond. A 457, 1–20 (2001)

    Article  Google Scholar 

  6. Oberbeck A.: Uber die Wärmleitung der Flüssigkeiten bei Berücksichtigung der Strömungen infolge von Temperaturdifferenzen. Ann. Phys. Chem. 7, 271–292 (1879)

    Article  Google Scholar 

  7. Oberbeck, A.: Uber die Bewegungsercheinungen der Atmosphere. Sitz. Ber. K. Preuss. Akad. Miss., 383 and 1120 (1888)

  8. Pearson J.R.A.: On convection cells induced by surface tension. J. Fluid Mech. 4, 489–500 (1958)

    Article  MATH  Google Scholar 

  9. Rajagopal K.R., Saccomandi G., Vergori L.: On the Oberbeck-Boussinesq approximation in fluids with pressure-dependent viscosities. Nonlinear Anal. Real World Appl. 10(2), 1139–1150 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Rajagopal K.R., Saccomandi G., Vergori L.: Stability analysis of the Rayleigh–Bénard convection for a fluid with temperature and pressure dependent viscosity. Z. Angew. Math. Phys. 60, 739–755 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Rajagopal, K.R., Saccomandi, G., Vergori, L.: A systematic approximation for the equations governing convection-diffusion in a porous medium. Nonlinear Analy. Real World Appl. (2009, accepted)

  12. Rayleigh L.: On convective currents in a horizontal layer of fluid when the higher temperature is on the under side. Philos. Mag. 32, 529–546 (1916)

    Google Scholar 

  13. Rionero S.: Metodi variazionali per la stabilità asintotica in media in magnetoidrodinamica. Ann. Mate. Pura Appl. 78, 339–364 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  14. Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Applied Mathematical Sciences, vol. 68. Springer-Verlag, New York (1997)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. R. Rajagopal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajagopal, K.R., Saccomandi, G. & Vergori, L. Stability analysis of Rayleigh–Bénard convection in a porous medium. Z. Angew. Math. Phys. 62, 149–160 (2011). https://doi.org/10.1007/s00033-010-0062-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-010-0062-7

Mathematics Subject Classification (2000)

Navigation