Skip to main content
Log in

Hopf bifurcation for non-densely defined Cauchy problems

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we establish a Hopf bifurcation theorem for abstract Cauchy problems in which the linear operator is not densely defined and is not a Hille–Yosida operator. The theorem is proved using the center manifold theory for non-densely defined Cauchy problems associated with the integrated semigroup theory. As applications, the main theorem is used to obtain a known Hopf bifurcation result for functional differential equations and a general Hopf bifurcation theorem for age-structured models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adimy M.: Bifurcation de Hopf locale par semi-groupes intégrés. C. R. Acad. Sci. Paris Sér. I Math. 311, 423–428 (1990)

    MathSciNet  MATH  Google Scholar 

  2. Adimy M., Arino O.: Bifurcation de Hopf globale pour des équations à retard par des semi-groupes intégrés. C. R. Acad. Sci. Paris Sér. I Math. 317, 767–772 (1993)

    MathSciNet  MATH  Google Scholar 

  3. Andronov, A.A., Vitt, A.A., Khaikin, S.E.: Theory of Oscillators (in Russian), 2nd edn., Fizmatgiz, Moscow, 1959. English Edition, Pergamon Press, Oxford-New York-Toronto (1966)

  4. Arendt W.: Resolvent positive operators. Proc. Lond. Math. Soc. 54, 321–349 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  5. Arendt W.: Vector valued Laplace transforms and Cauchy problems. Israel J. Math. 59, 327–352 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  6. Arendt W., Batty C.J.K., Hieber M., Neubrander F.: Vector-Valued Laplace Transforms and Cauchy Problems. Birkhäuser, Basel (2001)

    MATH  Google Scholar 

  7. Arino O., Hbid M.L., Ait Dads E.: Delay Differential Equations and Applications. Springer, Berlin (2006)

    Book  MATH  Google Scholar 

  8. Bertoni S.: Periodic solutions for non-linear equations of structure populations. J. Math. Anal. Appl. 220, 250–267 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Crandall M.G., Rabinowitz P.H.: The Hopf bifurcation theorem in infinite dimensions. Arch. Ration. Mech. Anal. 67, 53–72 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chu J., Ducrot A., Magal P., Ruan S.: Hopf bifurcation in a model with diffusion and non-linear boundary conditions for structured population dynamics. J. Differ. Equ. 247, 956–1000 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cushing J.M.: Bifurcation of time periodic solutions of the McKendrick equations with applications to population dynamics. Comput. Math. Appl. 9, 459–478 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  12. Da Prato G., Lunardi A.: Stability, instability and center manifold theorem for fully nonlinear autonomous parabolic equations in Banach spaces. Arch. Ration. Mech. Anal. 101, 115–141 (1988)

    MathSciNet  MATH  Google Scholar 

  13. Da Prato G., Sinestrari E.: Differential operators with non-dense domain. Ann. Scuola. Norm. Sup. Pisa Cl. Sci 14, 285–344 (1987)

    MathSciNet  MATH  Google Scholar 

  14. Diekmann O., van Gils S.A., Verduyn Lunel S.M., Walther H.-O.: Delay Equations: Functional-, Complex-, and Nonlinear Analysis. Springer, New York (1995)

    MATH  Google Scholar 

  15. Ducrot A., Liu Z., Magal P.: Essential growth rate for bounded linear perturbation of non-densely defined Cauchy problems. J. Math. Anal. Appl 341, 501–518 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Friedrichs K.O.: Advanced Ordinary Differential Equations. Gordon and Breach, New York (1965)

    MATH  Google Scholar 

  17. Golubitsky M., Rabinowitz P.H.: A sketch of the Hopf bifurcation theorem. In: Morawetz, C.S., Serrin, J.B., Sinai, Y.G. (eds) Selected Works of Eberhard Hopf with Commentaries, pp. 111–118. American Mathematical Society, Providence (2002)

    Google Scholar 

  18. Hale J.K.: Ordinary Differential Equations. Wiley, NewYork (1969)

    MATH  Google Scholar 

  19. Hale J.K.: Theory of Function Differential Equations. Springer, New York (1977)

    Google Scholar 

  20. Hale J.K., Verduyn Lunel S.M.: Introduction to Functional Differential Equations. Springer, New York (1993)

    MATH  Google Scholar 

  21. Hassard B.D., Kazarinoff N.D., Wan Y.-H.: Theory and Applications of Hopf Bifurcaton, London Mathematical Society Lecture Note Series, vol. 41. Cambridge University Press, Cambridge (1981)

    Google Scholar 

  22. Henry D.: Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics. Springer, Berlin (1981)

    Google Scholar 

  23. Hopf E.: Abzweigung einer periodischer Lösung von einer stationären Lösung eines Differentialsystems. Ber. Verh. Sächs. Akad. Wiss. Leipzig. Math-Nat. K1 95, 3–22 (1943)

    MathSciNet  Google Scholar 

  24. Iannelli, M.: Mathematical Theory of Age-Structured Population Dynamics, Applied Mathematics Monographs, CNR, vol. 7. Giadini Editori e Stampatori, Pisa (1994)

  25. Iooss G.: Existence et stabilité de la solution périodique secondaire intervenant dans les problèmes d’évolution du type Navier-Stokes. Arch. Ration. Mech. Anal. 47, 301–329 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  26. Iudovich V.I.: The onset of auto-oscillations in a fluid. J. Appl. Math. Mech. 35, 587–603 (1971)

    Article  MathSciNet  Google Scholar 

  27. Joseph D.D., Sattinger D.H.: Bifurcating time periodic solutions and their stability. Arch. Ration. Mech. Anal. 45, 79–109 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kellermann H., Hieber M.: Integrated semigroups. J. Funct. Anal. 84, 160–180 (1989)

    Article  MathSciNet  Google Scholar 

  29. Kielhőfer H.: Bifurcation Theory: An Introduction with Applications to PDEs. Springer, New York (2004)

    Google Scholar 

  30. Kostova T., Li J.: Oscillations and stability due to juvenile competitive effects on adult fertility. Comput. Math. Appl. 32(11), 57–70 (1996)

    Article  MATH  Google Scholar 

  31. Li J., Zhou Y., Ma Z., Hyman J.M.: Epidemiological models for mutating pathogens. SIAM J. Appl. Math. 65, 1–23 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. Liu Z., Magal P., Ruan S.: Projectors on the generalized eigenspaces for functional differential equations using integrated semigroups. J. Differ. Equ. 244, 1784–1809 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Magal P.: Compact attractors for time-periodic age structured population models. Electron. J. Differ. Equ. 2001, 1–35 (2001)

    MathSciNet  Google Scholar 

  34. Magal P., Ruan S.: On integrated semigroups and age structured models in L p spaces. Differ. Integral Equ. 20, 137–139 (2007)

    MathSciNet  Google Scholar 

  35. Magal P., Ruan S.: On semilinear Cauchy problems with non-dense domain. Adv. Differ. Equ. 14(11/12), 1041–1084 (2009)

    MathSciNet  MATH  Google Scholar 

  36. Magal, P., Ruan, S.: Center manifolds for semilinear equations with non-dense domain and applications on Hopf bifurcation in age structured models. Mem. Amer. Math. Soc. 202(951) (2009)

  37. Marsden J.: The Hopf bifurcation for nonlinear semigroups. Bull. Amer. Math. Soc. 79, 537–541 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  38. Marsden J., McCraken M.: The Hopf Bifurcation and its Applications. Springer, New York (1976)

    MATH  Google Scholar 

  39. Neubrander F.: Integrated semigroups and their application to the abstract Cauchy problem. Pac. J. Math. 135, 111–155 (1988)

    MathSciNet  MATH  Google Scholar 

  40. Prüss J.: On the qualitative behavior of populations with age-specific interactions. Comput. Math. Appl. 9, 327–339 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  41. Sattinger D.H.: Bifurcation of periodic solutions of the Navier-Stokes equations. Arch. Ration. Mech. Anal. 41, 66–80 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  42. Swart J.H.: Hopf bifurcation and the stability of non-linear age-dependent population models. Comput. Math. Appl. 15, 555–564 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  43. Thieme H.R.: Semiflows generated by Lipschitz perturbations of non-densely defined operators. Differ. Integral Equ. 3, 1035–1066 (1990)

    MathSciNet  MATH  Google Scholar 

  44. Thieme H.R.: “Integrated semigroups” and integrated solutions to abstract Cauchy problems. J. Math. Anal. Appl. 152, 416–447 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  45. Thieme, H.R.: Analysis of age-structured population models with an additional structure. In: Arino, O., Axelrod, D.E., Kimmel, M. (eds.) Mathematical Population Dynamics, Lecture Notes in Pure and Applied Mathematics, vol. 131, pp. 115–126. Marcel Dekker, New York (1991)

  46. Thieme H.R.: Quasi-compact semigroups via bounded perturbation. In: Arino, O., Axelrod, D., Kimmel, M. (eds) Advances in Mathematical Population Dynamics-Molecules, Cells and Man, pp. 691–713. World Scientific, Singapore (1997)

    Google Scholar 

  47. Thieme H.R.: Differentiability of convolutions, integrated semigroups of bounded semi-variation, and the inhomogeneous Cauchy problem. J. Evol. Equ. 8, 1–23 (2008)

    Article  MathSciNet  Google Scholar 

  48. Vanderbauwhede A., Iooss G.: Center manifold theory in infinite dimensions. In: Jones, C.K.R.T., Kirchgraber, U., Walther, H.O. (eds) Dynamics Reported (new series), vol. 1, pp. 125–163. Springer, Berlin (1992)

    Google Scholar 

  49. Webb G.F.: Theory of Nonlinear Age-Dependent Population Dynamics. Marcel Dekker, New York (1985)

    MATH  Google Scholar 

  50. Wu J.: Theory and Applications of Partial Differential Equations. Springer, New York (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigui Ruan.

Additional information

Z. Liu, P. Magal—Research was partially supported by the French Ministry of Foreign and European Affairs program EGIDE (20932UL).

S. Ruan—Research was partially supported by the National Science Foundation (DMS-0715772 and DMS-1022728).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z., Magal, P. & Ruan, S. Hopf bifurcation for non-densely defined Cauchy problems. Z. Angew. Math. Phys. 62, 191–222 (2011). https://doi.org/10.1007/s00033-010-0088-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-010-0088-x

Mathematics Subject Classification (2000)

Keywords

Navigation