Skip to main content
Log in

A thermodynamical framework for chemically reacting systems

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we develop a thermodynamic framework that is capable of describing the response of viscoelastic materials that are undergoing chemical reactions that takes into account stoichiometry. Of course, as a special sub-case, we can also describe the response of elastic materials that undergo chemical reactions. The study generalizes the framework developed by Rajagopal and co-workers to study the response of a disparate class of bodies undergoing entropy producing processes. One of the quintessential feature of this framework is that the second law of thermodynamics is formulated by introducing Gibbs’ potential, which is the natural way to study problems involving chemical reactions. The Gibbs potential–based formulation also naturally leads to implicit constitutive equations for the stress tensor. Another feature of the framework is that the constraints due to stoichiometry can also be taken into account in a consistent manner. The assumption of maximization of the rate of entropy production due to dissipation, heat conduction, and chemical reactions is invoked to determine an equation for the evolution of the natural configuration κ p(t)(B), the heat flux vector and a novel set of equations for the evolution of the concentration of the chemical constituents. To determine the efficacy of the framework with regard to chemical reactions, those occurring during vulcanization, a challenging set of chemical reactions, are chosen. More than one type of reaction mechanism is considered and the theoretically predicted distribution of mono, di and polysulfidic cross-links agree reasonably well with available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abhilash P.M., Kannan K., Varkey B.: Simulation of curing of a slab of rubber. Mater. Sci. Eng. B 168, 237–241 (2010)

    Article  Google Scholar 

  2. Bjornbom P.H.: The independent reactions in calculations of complex chemical equilibria. Ind. Eng. Chem. Fundam. 14, 102–106 (1975)

    Article  Google Scholar 

  3. Brinkley S.R.: Note on conditions of equilibrium for systems of many constituents. J. Chem. Phys. 14, 563–564 (1946)

    Article  Google Scholar 

  4. Chong E.K.P., Zak S.H.: An Introduction to Optimization. Wiley (Asia) Pte. Ltd., Singapore (2004)

    Google Scholar 

  5. Coran A.Y.: Vulcanization. part vi. a model and treatment for scorch delay kinetics. Rubber Chem. Technol. 37, 689–697 (1964)

    Article  Google Scholar 

  6. Coran, A.Y.: Vulcanization. In: Mark, J.E., Erman, B., Eirich, F.R. (eds.) The Science and Technology of Rubber, pp. 321–367. (2005)

  7. Denbigh K.: The Principles of Chemical Equilibrium. Cambridge University Press, London (1971)

    Google Scholar 

  8. Ding R., Leonov A.: A kinetic model for the sulfur accelerated vulcanization of rubber compound. J. Appl. Polym. Sci. 69, 455–463 (1996)

    Article  Google Scholar 

  9. Ding R., Leonov A., Coran A.Y.: A study of the vulcanization kinetics of an accelerated-sulfur sbr compound. Rubber Chem. Technol. 69, 81–91 (1996)

    Article  Google Scholar 

  10. Eckart C.: The thermodynamics of irreversible processes. IV. The theory of elasticity and anelasticity. Phys. Rev. 73, 373–382 (1948)

    Article  MATH  MathSciNet  Google Scholar 

  11. Fan R., Zhang Y., Huang C., Gong P., Zhang Y.: Simulation and verification for sulfur accelerated vulcanization of gum natural rubber compound. Rubber Chem. Technol. 75, 287–297 (2002)

    Article  Google Scholar 

  12. Geyser M., McGill W.J.: A study of the rate of formation of polysulfides of tetramethylthiuram disulfide. J. Appl. Polym. Sci. 55, 215–224 (1995)

    Article  Google Scholar 

  13. Geyser M., McGill W.J.: Thiuram-accelerated sulfur vulcanization. I. The formation of the active sulfurating agent. J. Appl. Polym. Sci. 60, 425–430 (1996)

    Article  Google Scholar 

  14. Geyser M., McGill W.J.: Thiuram-accelerated sulfur vulcanization. II. The formation of crosslink precursors. J. Appl. Polym. Sci. 60, 431–437 (1996)

    Article  Google Scholar 

  15. Ghosh P., Katare S., Patkar P., Caruthers J.M., Venkatasubramanian V., Walker K.A.: Sulphur vulcanization of natural rubber for benzothiazole accelerated formulations: From reaction mechanisms to a rational kinetic model. Rubber Chem. Technol. 76, 592–693 (2003)

    Article  Google Scholar 

  16. Green A.E., Nagdhi P.M.: On the thermodynamics and the nature of the second law. Proc. R. Soc. A 357, 253–270 (1977)

    Article  Google Scholar 

  17. Jog C.S.: Continuum Mechanics. Narosa Publishing House Pvt. Ltd., New Delhi (2007)

    Google Scholar 

  18. Kannan K., Rajagopal K.R.: A thermomechanical framework for the transition of a viscoelastic liquid to a viscoelastic solid. Math. Mech. Solids 9, 37–59 (2004)

    MATH  MathSciNet  Google Scholar 

  19. Loo C.T.: High temperature vulcanization of elastomers: 2. Network structures in conventional sulphenamide-sulphur natural rubber vulcanizates. Polymer 15, 357–365 (1974)

    Article  Google Scholar 

  20. Loo C.T.: High temperature vulcanization of elastomers: 3. Network structures of efficiently vulcanized natural rubber mixes. Polymer 15, 729–737 (1974)

    Article  Google Scholar 

  21. Malek J., Rajagopal K.R.: A thermodynamic framework for a mixture of two liquids. Nonlinear Anal. Real World Appl. 9, 1649–1660 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  22. Malik, W.A., Rajagopal, S., Darbha, S., Rajagopal, K.R. Maximizing the algebraic connectivity with at most a prescribed number of edges. In: Sivasundaram, S., Vasundhara, J., Udwadia F.E., Lasiecka, I. (eds.) Advances in Dynamics and Controls: Theory, Methods and Applications. (2009)

  23. Moakher M.: Fourth-order cartesian tensors: Old and new facts, notions and applications. Q. J. Mech. Appl. Math. 61, 181–203 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Morgan B., McGill W.J.: Benzothiazole accelerated sulfur vulcanization. iv. effect of zno and bis(2 mercaptobenzothiazole)zinc(ii) on 2 bisbenzothiazole 2,2 polysulfide formation in 2 bisbenzothiazole 2,2 disulfide and 2 bisbenzothiazole 2,2 disulfide/sulfur. J. Appl. Polym. Sci. 76, 1405–1412 (2000)

    Article  Google Scholar 

  25. Morgan B., McGill W.J.: Benzothiazole accelerated sulfur vulcanization. v. 2 bisbenzothiazole 2,2 disulfide/zno and 2 bisbenzothiazole 2,2 disulfide/(2 mercaptobenzothiazole)zinc(ii) as accelerators for 2,3 dimethyl 2 butene. J. Appl. Polym. Sci. 76, 1413–1421 (2000)

    Article  Google Scholar 

  26. Onsager L.: Reciprocal relations in irreversible thermodynamics. Phys. Rev. 37, 405–426 (1931)

    Article  MATH  Google Scholar 

  27. Prasad S.C., Rajagopal K.R.: A continuum model for the creep of single crystal nickel-base superalloys. Acta Mater. 53, 669–679 (2005)

    Article  Google Scholar 

  28. Rajagopal K.R., Srinivasa A.R.: A thermodynamic frame work for rate type fluid models. J. Nonnewton. Fluid Mech. 88, 207–227 (2000)

    Article  MATH  Google Scholar 

  29. Rajagopal K.R., Srinivasa A.R.: On the thermomechanics of materials that have multiple natural configurations - part i: Viscoelasticity and classical plasticity. Zeitschrift für Angew. Mathematik Phys. 55, 861–893 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  30. Rajagopal K.R., Srinivasa A.R.: On the thermomechanics of materials that have multiple natural configurations- part ii: Twinning and solid to solid phase transformation. Zeitschrift für Angew. Mathematik Phys. 55, 1074–1093 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  31. Rajagopal K.R., Srinivasa, A.R.: A gibbs-potential-based formulation for obtaining the response functions for a class of viscoelastic materials. Proceedings of the Royal Society A, pp. 1–20. (2010)

  32. Rajagopal K.R., Tao L.: Mechanics of Mixtures. World Scientific Publishing Co. Pte Ltd., Singapore (1995)

    MATH  Google Scholar 

  33. Rajagopal K.R., Tao L.: Modeling of the microwave drying process of aqueous dielectrics.. Zeitschrift für Angew. Mathematik Phys. 53, 923–948 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  34. Rao I.J., Rajagopal K.R.: A thermodynamic framework for the study of crystallization in polymers. Zeitschrift für Angew. Mathematik Phys. 53, 365–406 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  35. Schrodinger E.: What is Life?. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  36. Smith G.F.: On isotropic integrity basis. Arch. Ration. Mech. Anal. 18, 282–292 (1965)

    Article  MATH  Google Scholar 

  37. Spencer A.J.M., Rivlin R.S.: The theory of matrix polynomials and its application to the mechanics of isotropic continua. Arch. Ration. Mech. Anal. 2, 309–336 (1958)

    Article  MathSciNet  Google Scholar 

  38. Tao, L., Rajagopal, K.R.: On the construction of constitutive relations in hyperelasticity. In preparation

  39. Truesdell C., Noll W.: The Non-linear Field Theories of Mechanics. Springer, Berlin (1992)

    MATH  Google Scholar 

  40. Zeleznik F.J., Gordon S.: Calculations of complex chemical equilibria. Ind. Eng. Chem. 60, 27–57 (1968)

    Article  Google Scholar 

  41. Ziegler, H.: Some extremum principles in irreversible thermodynamics with application to continuum mechanics. In: Sneddon I.N., Hill R. (eds.) Progress in Solid Mechanics, vol. 4, pp. 3–113. (1963)

  42. Ziegler H., Wehrli C.: The derivation of constitutive relations from the free-energy and the dissipation function. Adv. Appl. Mech. 25, 183–238 (1987)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. R. Rajagopal.

Additional information

Submitted to Zeitschrift für Angewandte Mathematik und Physik (ZAMP).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kannan, K., Rajagopal, K.R. A thermodynamical framework for chemically reacting systems. Z. Angew. Math. Phys. 62, 331–363 (2011). https://doi.org/10.1007/s00033-010-0104-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-010-0104-1

Mathematics Subject Classification (2000)

Keywords

Navigation