Skip to main content
Log in

Jump conditions in stress relaxation and creep experiments of Burgers type fluids: a study in the application of Colombeau algebra of generalized functions

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We discuss stress relaxation and creep experiments of fluids that are generalizations of the classical model due to Burgers by allowing the material moduli such as the viscosities and relaxation and retardation times to depend on the stress. The physical problem, which is cast within the context of one dimension, leads to an ordinary differential equation that involves nonlinear terms like product of a function with a jump discontinuity and the derivative of a function with a jump discontinuity. As the equations are nonlinear, standard techniques that are used to study problems concerning linear viscoelastic fluids such as Laplace transforms and the theory of distributions are not applicable. We find it necessary to seek the solution in a more general setting. We discuss the mathematical and physical issues concerning the jump discontinuities and nonlinearity of the governing equation, and we show that the solution to the governing equation can be found in the sense of the generalized functions introduced by Colombeau. In the framework of Colombeau algebra we, under certain assumptions, derive jump conditions that shall be used in stress relaxation and creep experiments of fluids of the Burgers type. We conclude the paper with a discussion of the physical relevance of these assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anguelov R., Rosinger E.E.: Solving large classes of nonlinear systems of PDEs. Comput. Math. Appl. 53(3–4), 491–507 (2007). doi:10.1016/j.camwa.2006.02.040 ISSN 0898-1221

    Article  MathSciNet  MATH  Google Scholar 

  2. Antosik P., Mikusiński J., Sikorski R.: The Theory of Distributions—The Sequential Approach. Elsevier, Amsterdam (1973)

    MATH  Google Scholar 

  3. Bandelli R., Rajagopal K.R.: Start-up flows of second grade fluids in domains with one finite dimension. Int. J. Non-Linear Mech. 30(6), 817–839 (1995). doi:10.1016/0020-7462(95)00035-6 ISSN 0020-7462

    Article  MathSciNet  MATH  Google Scholar 

  4. Baty, R.S., Farassat, F., Tucker, D.H.: Nonstandard analysis and jump conditions for converging shock waves. J. Math. Phys. 49(6), 063101, 18, (2008). ISSN 0022-2488. doi:10.1063/1.2939482

  5. Bland D.R.: The Theory of Linear Viscoelasticity. Pergamon Press, New York (1960)

    MATH  Google Scholar 

  6. Bridgman P.W.: The Physics of High Pressure. Macmillan, New York (1931)

    Google Scholar 

  7. Burgers, J.M.: Mechanical considerations–model systems–phenomenological theories of relaxation and viscosity. In: First Report on Viscosity and Plasticity, chapter 1, pp. 5–67. Nordemann Publishing, New York (1939)

  8. Christov, C.I., Jordan, P.M.: Comment on “Stokes’ first problem for an Oldroyd-B fluid in a porous half space” [Phys. Fluids [17], 023101 (2005)]. Phys. Fluids, 21 (6): 069101 (2009). doi:10.1063/1.3126503 (2009)

  9. Churchill R.V.: Operational Mathematics. 2nd edn. McGraw-Hill, New York (1958)

    MATH  Google Scholar 

  10. Colombeau, J.-F.: Elementary introduction to new generalized functions, volume 113 of North-Holland Mathematics Studies. North-Holland Publishing Co., Amsterdam (1985). ISBN 0-444-87756-8. Notes on Pure Mathematics, 103

  11. Ferry J.D.: Viscoelastic Properties of Polymers. 3rd edn. Wiley, New York (1980)

    Google Scholar 

  12. Friedman A.: Generalized Functions and Partial Differential Equations. Prentice-Hall Inc., Englewood Cliffs, NJ (1963)

    MATH  Google Scholar 

  13. Ivins E.R., Sammis C.G., Yoder C.F.: Deep mantle viscous structure with prior estimate and satellite constraint. J. Geophys. Res. 98, 4579–4609 (1993)

    Article  Google Scholar 

  14. Karra, S., Rajagopal, K.R.: Development of three dimensional constitutive theories based on lower dimensional experimental data. Appl. Mat. 54(2), 147–176, April 2009. ISSN 0862-7940. doi:10.1007/s10492-009-0010-z

  15. Krishnan J.M., Rajagopal K.R.: Thermodynamic framework for the constitutive modeling of asphalt concrete: theory and applications. J. Mater. Civ. Eng. 16(2), 155–166 (2004)

    Article  Google Scholar 

  16. Kurzweil J.: Generalized ordinary differential equations. Czech. Math. J. 8(3), 360–388 (1958)

    MathSciNet  Google Scholar 

  17. Kurzweil, J.: Ordinary differential equations, volume 13 of Studies in Applied Mechanics. Elsevier Scientific Publishing Co., Amsterdam, 1986. ISBN 0-444-99509-9. Introduction to the theory of ordinary differential equations in the real domain, Translated from the Czech by Michal Basch

  18. Maxwell J.C.: On the dynamical theory of gases. Philos. Trans. R. Soc. 157, 49–88 (1867). doi:10.1098/rstl.1867.0004

    Article  Google Scholar 

  19. McKinney J.E., Belcher H.V.: Dynamic compressibility of polyvinylacetate and its relation to free volume. J. Res. Nat. Bur. Stand. Sect. A. Phys. Chem. A67(1), 43–53 (1963)

    Google Scholar 

  20. Oberguggenberger M.: Multiplication of distributions and applications to partial differential equations, volume 259 of Pitman Research Notes in Mathematics Series. Longman Scientific & Technical, Harlow (1992) ISBN 0-582-08733-3

    Google Scholar 

  21. Oberguggenberger M.B., Rosinger E.E.: Solution of continuous nonlinear PDEs through order completion, volume 181 of North-Holland Mathematics Studies. North-Holland Publishing Co., Amsterdam (1994) ISBN 0-444-82035-3

    Google Scholar 

  22. Oldroyd J.G.: On the formulation of rheological equations of state. Proc. R. Soc. A-Math. Phys. Eng. Sci. 200(1063), 523–541 (1950) ISSN 00804630

    Article  MathSciNet  MATH  Google Scholar 

  23. Poling B.E., Prausnitz J.M., O’Connell J.P.: The properties of gases and liquids. McGraw–Hill, New York (2001)

    Google Scholar 

  24. Pražák D.: A remark on characterization of entropy solutions. Comput. Math. Appl. 53(3–4), 453–460 (2007). doi:10.1016/j.camwa.2006.02.043 ISSN 0898-1221

    MathSciNet  MATH  Google Scholar 

  25. Rajagopal K.R., Saccomandi G.: The mechanics and mathematics of the effect of pressure on the shear modulus of elastomers. Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 465, 3859–3874 (2009). doi:10.1098/rspa.2009.0416

    Article  MATH  Google Scholar 

  26. Rajagopal K.R., Srinivasa A.R.: A thermodynamic frame work for rate type fluid models. J. Non-Newton. Fluid Mech. 88(3), 207–227 (2000). doi:10.1016/S0377-0257(99)00023-3 ISSN 0377-0257

    Article  MATH  Google Scholar 

  27. Rosinger, E.E.: Generalized solutions of nonlinear partial differential equations, volume 146 of North-Holland mathematics studies. North-Holland Publishing Co., Amsterdam (1987). ISBN 0-444-70310-1. Notas de Matemática [Mathematical Notes], 119

  28. Sahaphol T., Miura S.: Shear moduli of volcanic soils. Soil Dyn. Earthq. Eng. 25(2), 157–165 (2005). doi:10.1016/j.soildyn.2004.10.001 ISSN 0267-7261

    Article  Google Scholar 

  29. Schwabik Š., Tvrdý M., Vejvoda O.: Differential and integral equations. D. Reidel Publishing Co., Dordrecht (1979) ISBN 90-277-0802-9

    MATH  Google Scholar 

  30. Singh H., Nolle A.W.: Pressure dependence of the viscoelastic behavior of polyisobutylene. J. Appl. Phys. 30(3), 337–341 (1959) ISSN 0021-8979

    Article  Google Scholar 

  31. van der Walt J.: The order completion method for systems of nonlinear PDEs: Pseudo-topological perspectives. Acta Appl. Math. 103(1), 1–17 (2008). doi:10.1007/s10440-008-9214-6

    Article  MathSciNet  MATH  Google Scholar 

  32. van der Walt J.: The order completion method for systems of nonlinear PDEs revisited. Acta Appl. Math. 106(1), 149–176 (2009). doi:10.1007/s10440-008-9287-2

    Article  MathSciNet  MATH  Google Scholar 

  33. Weertman J., White S., Cook A.H.: Creep laws for the mantle of the Earth [and discussion]. Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 288(1350), 9–26 (1978) ISSN 00804614

    Google Scholar 

  34. Wineman A.: Nonlinear viscoelastic solids—a review. Math. Mech. Solids 14(3), 300–366 (2009). doi:10.1177/1081286509103660 ISSN 1081-2865

    Article  MathSciNet  MATH  Google Scholar 

  35. Wineman A.S., Rajagopal K.R.: Mechanical Response of Polymers—An Introduction. Cambridge University Press, Cambridge (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. R. Rajagopal.

Additional information

Vít Průša thanks the Nečas Center for Mathematical Modeling (project LC06052 financed by the MŠMT of the Czech republic) for its support.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Průša, V., Rajagopal, K.R. Jump conditions in stress relaxation and creep experiments of Burgers type fluids: a study in the application of Colombeau algebra of generalized functions. Z. Angew. Math. Phys. 62, 707–740 (2011). https://doi.org/10.1007/s00033-010-0109-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-010-0109-9

Mathematics Subject Classification (2000)

Keywords

Navigation