Skip to main content
Log in

Stokes flow of an assemblage of porous particles: stress jump condition

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

The present article investigates the overall bed permeability of an assemblage of porous particles. For the bed of porous particles, the fluid-particle system is represented as an assemblage of uniform porous spheres fixed in space. Each sphere, with a surrounding envelope of fluid, is uncoupled from the system and considered separately. This model is popularly known as cell model. Stokes equations are employed inside the fluid envelope and Brinkman equations are used inside the porous region. The stress jump boundary condition is used at the porous-liquid interface together with the continuity of normal stress and continuity of velocity components. On the surface of the fluid envelope, three different possible boundary conditions are tested. The obtained expression for the drag force is used to estimate the overall bed permeability of the assemblage of porous particles and the behavior of overall bed permeability is analyzed with various parameters like modified Darcy number (Da*), stress jump coefficient (β), volume fraction (ε), and effective viscosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

Radius of the porous sphere

b :

Radius of fluid envelope

k :

Permeability of the porous sphere

V f :

Velocity inside fluid envelope

P f :

Pressure inside fluid envelope

V p :

Velocity inside porous sphere

P p :

Pressure inside porous sphere

p 0 :

Constant

U imp :

Imposed velocity at the cell boundary

U :

Magnitude of imposed velocity

V 0 :

Basic velocity

A f, A p :

Scalars

A imp, B :

Scalars

f n :

Modified spherical Bessel function of first kind

S n :

Spherical harmonics

\({P_{n}^{m}}\) :

Associated legendre polynomial

Da :

Darcy number

Da*:

Modified Darcy number

T f, T p :

Stresses in fluid and porous region

λ:

Dimensionless parameter

λ*:

Dimensionless parameter

δ :

Viscosity ratio

ε :

Volume fraction

ρ :

Density of the fluid

μ f :

Dynamic viscosity

μ eff :

Effective viscosity

β :

Stress jump coefficient

References

  1. Happel J.: Viscous flow in multiparticle systems: slow motion of fluids relative to beds of spherical particles. A. I. Ch. E. J. 4, 197–201 (1958)

    MathSciNet  Google Scholar 

  2. Kuwabara S.: The force experienced by randomly distributed parallel cylinders or spheres in a viscous flow at small Reynolds numbers. J. Phys. Soc. Jpn. 14, 527–532 (1959)

    Article  MathSciNet  Google Scholar 

  3. Simha R.: A treatment of the viscosity of concentrated suspensions. J. Appl. Phys. 23, 1020–1024 (1952)

    Article  Google Scholar 

  4. Kim A.S., Yuan R.: A new model for calculating specific resistance of aggregated colloidal cake layers in membrane filtration process. J. Mem. Sci. 249, 89–101 (2005)

    Article  Google Scholar 

  5. Sherwood J.D.: Cell models for suspension viscosity. Chem. Eng. Sci. 61, 6727–6731 (2006)

    Article  Google Scholar 

  6. Li Y., Park C.W.: Effective medium approximation and deposition of colloidal particles in fibrous and granular media. Adv. Colloid Interface Sci. 87, 1–74 (2000)

    Article  Google Scholar 

  7. Albusairi B.H., Hsu J.T.: Flow through beds of perfusive particles: effective medium model for velocity prediction within the perfusive media. Chem. Eng. J. 100, 79–84 (2004)

    Article  Google Scholar 

  8. Umnova O., Attenborough K., Li K.M.: Cell model calculations of dynamic drag parameters in packings of spheres. J. Acoust. Soc. Am. 107, 3113–3119 (2000)

    Article  Google Scholar 

  9. Sun D., Zhu J.: Approximate solutions of non-Newtonian flows over a swarm of bubbles. Int. J. Multiphase Flow 30, 1271–1278 (2004)

    Article  MATH  Google Scholar 

  10. Kishore N., Chabra R.P., Eswaran V.: Drag on ensebles of fluid spheres translating in a power—law liquid at moderate Reynolds numbers. Chem. Eng. J. 139, 224–235 (2008)

    Article  Google Scholar 

  11. Davis R.H., Howard A.: Stone, flow through beds of porous particles. Chem. Eng. Sci. 23, 3993–4005 (1993)

    Google Scholar 

  12. Filippov A.N., Vasin S.I., Starov V.M.: Mathematical modeling of the hydrodynamic permeability of a membrane built up from porous particles with a permeable shell. Colloids Surf. A Physicochem. Eng. Aspects. 282–283, 272–278 (2006)

    Article  Google Scholar 

  13. Boutin C., Geindreau C.: Estimates and bounds of dynamic permeability of granular media. J. Acoust. Soc. Am. 124, 3576–3593 (2008)

    Article  Google Scholar 

  14. Kohr M., Raja Sekhar G.P., Wendland W.L.: Boundary integral equations for a three-dimensional Stokes-Brinkman cell model. Math. Models Methods Appl. Sci. 18, 2055–2085 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ochoa-Tapia J.A., Whitaker S.: Momentum transfer at the boundary between a porous medium and a homogeneous fluid-Theoretical development. Int. J. Heat Mass Transf. 38, 2635–2646 (1995a)

    Article  MATH  Google Scholar 

  16. Ochoa-Tapia J.A., Whitaker S.: Momentum transfer at the boundary between a porous medium and a homogeneous fluid-Comparison with experiment. Int. J. Heat Mass Transf. 38, 2647–2655 (1995b)

    Article  Google Scholar 

  17. Kuznetsov A.V.: Analytical investigation of the fluid flow in the interface region between a porous medium and a clear fluid in channels partially filled with a porous medium. Appl. Sci. Res. 56, 53–67 (1996)

    Article  MATH  Google Scholar 

  18. Bhattacharyya A., Raja Sekhar G.P.: Viscous flow past a porous sphere -effect of stress jump condition. Chem. Eng. Sci. 59, 4481–4492 (2004)

    Article  Google Scholar 

  19. Bhattacharyya A., Raja Sekhar G.P.: Stokes flow inside a porous spherical shell-stress-jump boundary condition. Z. Angew. Math. Phys. 56, 475–496 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Partha M.K., Murthy P.V.S.N., Raja Sekhar G.P.: Viscous flow past a porous spherical shell-effect of stress jump boundary condition. J. Eng. Mech. 131, 1291–1301 (2005)

    Article  Google Scholar 

  21. Partha M.K., Murthy P.V.S.N., Raja Sekhar G.P.: Viscous flow past a spherical void in porous media: effect of stress jump boundary condition. J. Porous Media 9, 745–767 (2006)

    Article  Google Scholar 

  22. Valdés-Parada F.J., Álvarez-Ramírez J., Goyeau B., Ochoa-Tapia J.A.: Computation of jump coefficients for momentum transfer between a porous medium and a fluid using a closed generalized transfer equation. Trans. Porous Media 78, 439–457 (2009)

    Article  Google Scholar 

  23. Neale G., Epstein M., Nader W.: Creeping flow relative to permeable spheres. Chem. Eng. Sci. 28, 1865–1874 (1973)

    Article  Google Scholar 

  24. Padmavathi B.S., Amaranath T., Nigam S.D.: Stokes flow past a porous sphere using Brinkman’s model. Z. Angew. Math. Phy. 44, 929–939 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  25. Raja Sekhar G.P., Padmavathi B.S., Amaranath T.: Complete general solution of the Brinkman equation. Z. Angew. Math. Mech. 77, 555–556 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Padmavathi B.S., Raja Sekhar G.P., Amaranath T.: A note on general solutions of Stokes equations. QJMAM 51, 2–6 (1998)

    MathSciNet  Google Scholar 

  27. Saffman P.G.: On the boundary condition at the surface of a porous medium. Stud. Appl. Math. 50, 93–101 (1971)

    MATH  Google Scholar 

  28. Raja Sekhar G.P., Amaranath T.: Stokes flow inside a porous spherical shell. Z. Angew. Math. Phys. 51, 481–490 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Raja Sekhar G.P., Amaranath T.: Stokes flow past a porous sphere with an impermeable core. Mech. Res. Commun. 23, 449–460 (1996)

    Article  MATH  Google Scholar 

  30. Qin Yu., Kaloni P.N.: Creeping flow past a porous spherical shell. Z. Angew. Math. Mech. 73, 77–84 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  31. Nield D.A.: The Beavers–Joseph boundary condition and related matters: A historical and critical note. Trans. Por. Med. 78, 537–540 (2009)

    Article  Google Scholar 

  32. Ooms G., Mijnlieff P.F., Beckers H.: Friction force exerted by a flowing fluid on a permeable particle, with particular reference to polymer coils. J. Chem. Phys. 53, 4123–4130 (1970)

    Article  Google Scholar 

  33. Nield D.A., Bejan A.: Convection in Porous Media. Springer, New York (1998)

    Google Scholar 

  34. Rodrigues A.E., Loureiro J.M., Chenou C., Rendueles de la Vega M.: Bioseparations with permeable particles. J. Chromatogr. B Biomed. Sci. Appl. 664, 233–240 (1995)

    Article  Google Scholar 

  35. Kovář J., Fortelný I.: Effect of polydispersity on the viscosity of a suspension of hard spheres. Rheol. Acta 23, 454–456 (1984)

    Article  Google Scholar 

  36. Jai Prakash, Raja Sekhar G.P.: Overall bed permeability for flow through beds of permeable porous particles using effective medium model stress jump condition. Chem. Eng. Commun. 198, 85–101 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. P. Raja Sekhar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prakash, J., Raja Sekhar, G.P. & Kohr, M. Stokes flow of an assemblage of porous particles: stress jump condition. Z. Angew. Math. Phys. 62, 1027–1046 (2011). https://doi.org/10.1007/s00033-011-0123-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-011-0123-6

Mathematics Subject Classification (2000)

Keywords

Navigation