Skip to main content
Log in

General decay and blow-up of solutions for a viscoelastic equation with nonlinear boundary damping-source interactions

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, a viscoelastic equation with nonlinear boundary damping and source terms of the form

$$\begin{array}{llll}u_{tt}(t)-\Delta u(t)+\displaystyle\int\limits_{0}^{t}g(t-s)\Delta u(s){\rm d}s=a\left\vert u\right\vert^{p-1}u,\quad{\rm in}\,\Omega\times(0,\infty), \\ \qquad\qquad\qquad\qquad\qquad u=0,\,{\rm on}\,\Gamma_{0} \times(0,\infty),\\ \dfrac{\partial u}{\partial\nu}-\displaystyle\int\limits_{0}^{t}g(t-s)\frac{\partial}{\partial\nu}u(s){\rm d}s+h(u_{t})=b\left\vert u\right\vert ^{k-1}u,\quad{\rm on} \ \Gamma_{1} \times(0,\infty) \\ \qquad\qquad\qquad\qquad u(0)=u^{0},u_{t}(0)=u^{1},\quad x\in\Omega, \end{array}$$

is considered in a bounded domain Ω. Under appropriate assumptions imposed on the source and the damping, we establish both existence of solutions and uniform decay rate of the solution energy in terms of the behavior of the nonlinear feedback and the relaxation function g, without setting any restrictive growth assumptions on the damping at the origin and weakening the usual assumptions on the relaxation function g. Moreover, for certain initial data in the unstable set, the finite time blow-up phenomenon is exhibited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alabau-Boussouira F.: On convexity and weighted integral inequalities for energy decay rates of nonlinear dissipative hyperbolic systems. Appl. Math. Optim. 51, 61–105 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnold V.L.: Mathematical Methods of Classical Mechanics. Springer, New York (1989)

    Google Scholar 

  3. Cavalcanti M.M., Domingos Cavalcanti V.N., Lasiecka I.: Well-posedness and optimal decay rates for the wave equation with nonlinear boundary damping-source interaction. J. Differ. Equ. 236, 407–459 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cavalcanti M.M., Domingos Cavalcanti V.N., Martinez P.: General decay rate estimates for viscoelastic dissipative systems. Nonlinear Anal. Theory Methods Appl. 68, 177–193 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cavalcanti M.M., Domingos Cavalcanti V.N., Prates Filho J.S., Soriano J.A.: Existence and uniform decay rates for viscoelastic problems with nonlinear boundary damping. Differ. Integral Equ. 14, 85–116 (2001)

    MathSciNet  MATH  Google Scholar 

  6. Cavalcanti M.M., Domingos Cavalcanti V.N., Soriano J.A.: Exponential decay for the solution of semilinear viscoelastic wave equation with localized damping. Electron. J. Differ. Equ. 44, 1–14 (2002)

    MathSciNet  Google Scholar 

  7. Cavalcanti M.M., Domingos Cavalcanti V.N., Soriano J.A.: Global solvability and asymptotic stability for the wave equation with nonlinear feedback and source term on the boundary. Adv. Math. Sci. Appl. 16, 661–696 (2006)

    MathSciNet  MATH  Google Scholar 

  8. Chen G.: Energy decay estimates and exact boundary value controllability for the wave equation in a bounded domain. J. Math. Pures Appl. 58, 249–273 (1979)

    MathSciNet  MATH  Google Scholar 

  9. Dafermos C.M.: Asymptotic stability in viscoelasticity. Arch. Ration. Mech. Anal. 37, 297–308 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dafermos C.M.: An abstract Voltera equation with applications to linear viscoelasticity. J. Differ. Equ. 7, 554–569 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  11. Daoulatli M., Lasiecka I., Toundykov D.: Uniform energy decay for a wave equation with partially supported nonlinear boundary dissipation without growth restrictions. Disret. Conti. Dyn. Syst. Ser. S 2, 67–94 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fabrizio M., Morro A.: Viscoelastic relaxation functions compatible with thermodynamics. J. Elasti. 19, 63–75 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  13. Guessmia A., Messaoudi S.A.: General energy decay estimates of Timoshenko systems with frictional versus viscoelastic damping. Math. Methods Appl. Sci. 32, 2102–2122 (2009)

    Article  MathSciNet  Google Scholar 

  14. Ha T.G.: On viscoelastic wave equation with nonlinear boundary damping and source term. Commun. Pure Appl. Anal. 6, 1543–1576 (2010)

    Article  Google Scholar 

  15. Haraux A.: Comportement à l’infini pour une équation des ondes non linéaire dissipative. C.R. Math. Acad. Sci. Paris Sèr. A 287, 507–509 (1978)

    MathSciNet  MATH  Google Scholar 

  16. Kirane M., Tatar N-e.: A memory type boundary stabilization of a mildy damped wave equation. Electron. J. Qual. Theory Differ. Equ. 6, 1–7 (1999)

    MathSciNet  Google Scholar 

  17. Komornik V., Zuazua E.: A direct method for boundary stabilization of the wave equation. J. Math. Pures Appl. 69, 33–54 (1990)

    MathSciNet  MATH  Google Scholar 

  18. Lasiecka I., Tataru D.: Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping. Differ. Integral Equ. 6, 507–533 (1993)

    MathSciNet  MATH  Google Scholar 

  19. Lu L., Li S., Chai S.: On a viscoelastic equation with nonlinear boundary damping and source terms: Global existence and decay of the solution. Nonlinear Anal. Real World Appl. 12, 295–303 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Martinez P.: A new method to obtain decay rate estimates for dissipative systems. ESAIM: Control Optim. Calc. Var. 4, 419–444 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Messaoudi S.A.: General decay of solutions of a viscoelastic equation. J. Math. Anal. Appl. 341, 1457–1467 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Messaoudi S.A., Tatar N-e.: Exponential and polynomial decay for quasilinear viscoelastic equation. Nonlinear Anal. Theory Methods Appl. 68, 785–793 (2007)

    MathSciNet  Google Scholar 

  23. Messaoudi S.A., Tatar N-e.: Global existence and uniform stability of solutions for a quasilinear viscoelastic problem. Math. Methods Appl. Sci. 30, 665–680 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Messaoudi S.A.: Blow-up and global existence in a nonlinear viscoelastic wave equation. Math. Nachr. 260, 58–66 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Messaoudi S.A.: Blow-up of positive-initial-energy solutions of a nonlinear viscoelastic hyperbolic equation. J. Math. Anal. Appl. 320, 902–915 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Messaoudi S.A.: General decay of the solution energy in a viscoelastic equation with a nonlinear source. Nonlinear Anal. Theory Methods Appl. 69, 2589–2598 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Messaoudi S.A., Mustafa M.I.: On convexity for energy decay rates of a viscoelastic equation with boundary feedback. Nonlinear Anal. Theory Methods Appl. 72, 3602–3611 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Munoz Rivera J.E., Peres Salvatierra A.: Asymptotic behavior of the energy in partially viscoelastic materials. Quart. Appl. Math. 59, 557–578 (2001)

    MathSciNet  MATH  Google Scholar 

  29. Munoz Rivera J.E., Lapa E.C., Baretto R.: Decay rates for viscoelastic plates with memory. J. Elasti. 44, 61–87 (1996)

    Article  MATH  Google Scholar 

  30. Munoz Rivera J.E., Naso M.G., Vegni F.M.: Asymptotic behavior of the energy for a class of weakly dissipative second-order systems with memory. J. Math. Anal. Appl. 286, 692–704 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Munoz Rivera J.E., Naso M.G.: Optimal energy decay rate for a class of weakly dissipative second-order systems with memory. Appl. Math. Lett. 23, 743–746 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Nakao M.: Asymptotic stability of the bounded of almost periodic solution of the wave equation with a nonlinear dissipative term. J. Math. Anal. Appl. 58, 336–343 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  33. Renardy, M., Hrusa, W.J., Nohel, J.A.: Mathematical Problems in Viscoelasticity, Pitman Monoger. Pure Appl. Math. Vol. 35, Longman D Sci. Tech. Harlow (1988)

  34. Vitillaro E.: Global existence for the wave equation with nonlinear boundary damping and source terms. J. Differ. Equ. 186, 259–298 (2002)

    Article  MathSciNet  Google Scholar 

  35. Wu S.T.: Blow-up of solutions for an integro-differential equation with a nonlinear source. Electron. J. Differ. Equ. 45, 1–9 (2006)

    Google Scholar 

  36. Wu S.T., Tsai L.Y.: Blow-up of positive-initial-energy solutions for an integro-differential equation with nonlinear damping. Taiwan. J. Math. 14, 2043–2058 (2010)

    MathSciNet  MATH  Google Scholar 

  37. Wu S.T.: Energy decay rates via convexity for some second-order evolution equation with memory and nonlinear time-dependent dissipation. Nonlinear Anal. Theory Methods Appl. 74, 532–543 (2011)

    Article  MATH  Google Scholar 

  38. Zuazua E.: Uniform stabilization of the wave equation by nonlinear boundary feedback. SIAM J. Control Optim. 28, 466–478 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shun-Tang Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, ST. General decay and blow-up of solutions for a viscoelastic equation with nonlinear boundary damping-source interactions. Z. Angew. Math. Phys. 63, 65–106 (2012). https://doi.org/10.1007/s00033-011-0151-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-011-0151-2

Mathematics Subject Classification (2000)

Keywords

Navigation