Skip to main content
Log in

Stability analysis of a thermo-elastic system of type II with boundary viscoelastic damping

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

The stability of a kind of one-dimensional thermo-elastic system of type II is considered. This system consists of two strongly coupled wave equations. Suppose that there exists an viscoelastic damping at one end of the 1-d domain. If without coupling, this damping always makes one of these two wave equations (the corresponding pure elastic system) achieve exponential stability and the other wave system (heat equation of type II) be conservative. Whether the coupling can pass the damping effect from the dissipative elastic system to the conservative heat system of type II is discussed. However, by a detailed spectral analysis, it is proved that this thermo-elastic system is at most asymptotically stable but not exponentially stable. A numerical simulation is given to support these results obtained in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Komornik V., Zuazua E.: A direct method for the boundary stabilization of the wave equation. J. Math. Pures Appl. 69, 33–54 (1990)

    MathSciNet  MATH  Google Scholar 

  2. Komornik, V.: Exact controllability and stabilization: the multiplier method. Research in Applied Mathematics, vol. 36, Wiley-Masson (1994)

  3. Lagnese J.: Note on boundary stabilization of wave equations. SIAM J. Control Optim. 26, 1250–1256 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen G.: Control and stabilization for the wave equation in a bounded domain, Part I. SIAM J. Control Optim. 17, 66–81 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  5. Lasiecka I., Triggiani R.: Uniform exponential decay in a bounded region with L 2(0, T; L 2(∑)) feedback control in the Dirichlet boundary conditions. J. Differ. Equ. 66, 340–390 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dafermos C.M.: On the existence and the asymptotic stability of solution to the equations of linear thermoelasticity. Arch. Ration. Mech. Anal. 29, 241–271 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  7. Muñoz Rivera J.E.: Energy decay rates in linear thermoelasticty. Funkcialaj Ekvacioj 35, 19–30 (1992)

    MathSciNet  MATH  Google Scholar 

  8. Ignaczak J., Ostoja-Starzewski M.: Thermoelasticity with Finite Wave Speeds, Oxford mathematical Monographs. Oxford University Press, New York (2010)

    Google Scholar 

  9. Lord H.W., Shulman Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15, 299–309 (1967)

    Article  MATH  Google Scholar 

  10. Racke R.: Thermoelasticity with second sound-Exponential stability in linear and non-linear 1-d. Math. Methods Appl. Sci. 25, 409–441 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Green A.E., Naghdi P.M.: Thermoelasticity without energy dissipation. J. Elast. 31, 189–208 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Green A.E., Naghdi P.M.: A re-examination of the basic postulates of thermomechanics. Proc. R. Soc. Lond. Ser. A 432, 171–194 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  13. Green A.E., Naghdi P.M.: On undamped heat waves in an elastic solid. J. Therm. Stress. 15, 253–264 (1992)

    Article  MathSciNet  Google Scholar 

  14. Green A.E., Naghdi P.M.: A unified pocedure for contruction of theories of deformable media, I. Clasical continuum physics. Proc. R. Soc. Lond. Ser. A 448, 335–356 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chirita S., Ciarletta M.: Spatial behavior for some non-standard problems in linear thermoelasticity without energy dissipation. J. Math. Anal. Appl. 367, 58–68 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Messaoudi S.A., Said-Houari B.: Energy decay in a Timoshenko-type system of thermoelasticity of type III. J. Math. Anal. Appl. 348, 298–307 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Quintanilla R., Racke R.: Stability in thermoelasticity of type III. Discrete Contin. Dyn. Syst. Ser. B 3, 383–400 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu Z.Y., Quintanilla R.: Energy decay rate of a mixed type II and type III thermoelastic system. Discrete Contin. Dyn. Syst. Ser. B 14, 1433–1444 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Leseduarte M.C., Magana A., Quintanilla R.: On the time decay of solutions in porous-thermo-elasticity of type II. Discrete Contin. Dyn. Syst. Ser. B 13, 375–391 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu Z., Zheng S.: Semigroups Associated with Dissipative Systems. Chapman&Hall/CRC, Boca Raton (1999)

    MATH  Google Scholar 

  21. Zhang X., Zuazua E.: Decay of solutions of the system of thermoelasticity of type III. Commun. Contemp. Math. 5, 1–59 (2003)

    Article  MathSciNet  Google Scholar 

  22. Djebabla A., Tatar N.: Exponential stabilization of the Timoshenko system by a thermo-viscoelastic damping. J. Dyn. Control Syst. 16, 189–210 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu Z.Y., Rao B.P.: Frequency domain approach for the polynomial stability of a system of partially damped wave equations. J. Math. Anal. Appl. 335, 860–881 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Xu G.Q., Han Z.J., Yung S.P.: Riesz basis property of serially connected Timoshenko beams. Int. J. Control 80, 470–485 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Han Z.J., Xu G.Q.: Stabilization and Riesz basis property of two serially connected Timoshenko beams system. Z. Angew. Math. Mech. 89, 962–980 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Guo B.Z., Xie Y.: A sufficient condition on Riesz basis with parentheses of non-self-adjoint operator and application to a serially connected string system under joint feedbacks. SIAM J. Control Optim. 43, 1234–1252 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Pazy A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  28. Lyubich Yu.I., Phóng V.Q.: Asymptotic stability of linear differential equations in Banach spaces. Studia Math. 88, 34–37 (1988)

    Google Scholar 

  29. Young, R.M.: An Introduction to Nonharmonic Fourier Series, pp. 80–84, Theorem 10. Academic Press, London (1980)

  30. Avdonin S.A., Ivanov S.A.: Families of Exponentials. The Method of Moments in Controllability Problems For Distributed Parameter Systems. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  31. Pan, C.D., Pan, C.B.: Elementary Number Theory, 3rd edn. Peking University Press, Beijing (2003, in Chinese)

  32. Han Z.J., Xu G.Q.: Dynamical behavior of a hybrid system of nonhomogeneous timoshenko beam with partial non-collocated inputs. J. Dyn. Control Syst. 17, 77–121 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Xu G.Q., Yung S.P.: The expansion of semigroup and criterion of Riesz basis. J. Differ. Equ. 210, 1–24 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-Jie Han.

Additional information

This research is supported by the Natural Science Foundation of China grant NSFC-61104130, 61174080 and the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20110032120074).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, ZJ., Xu, GQ. & Tang, XQ. Stability analysis of a thermo-elastic system of type II with boundary viscoelastic damping. Z. Angew. Math. Phys. 63, 675–689 (2012). https://doi.org/10.1007/s00033-011-0184-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-011-0184-6

Mathematics Subject Classification (2000)

Keywords

Navigation