Skip to main content
Log in

Infinitely many solutions for a differential inclusion problem in \({\mathbb{R}^N}\) involving p(x)-Laplacian and oscillatory terms

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we consider the differential inclusion in \({\mathbb{R}^N}\) involving the p(x)-Laplacian of the type \({\begin{array}{lll}-\triangle_{p(x)} u+V(x)|u|^{p(x)-2}u\in \partial F(x,u(x)),\;\;{\rm in}\;\;\mathbb{R}^N,\quad\quad\quad\quad\quad\quad ({\rm P})\end{array}}\) where \({p: \mathbb{R}^N \to {\mathbb{R}}}\) is Lipschitz continuous function satisfying some given assumptions. The approach used in this paper is the variational method for locally Lipschitz functions. Under suitable oscillatory assumptions on the potential F at zero or at infinity, we show the existence of infinitely many solutions of (P). We also establish a Bartsch-Wang type compact embedding theorem for variable exponent spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chang K.C.: Variational methods for nondifferentiable functionals and their applications to partial differential equations. J. Math. Anal. Appl. 80, 102–129 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  2. Kourogenis N., Papageorgiou N.S.: Nonsmooth critical point theory and nonlinear elliptic equations at resonance. J. Aust. Math. Soc. ser. A. 69, 245–271 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Kandilakis D., Kourogenis N., Papageorgiou N.S.: Two nontrivial critical points for nonsmooth functionals via local linking and applications. J. Global. Optim. 34, 219–244 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ricceri B.: A general variational principle and some of its applications. J. Comput. Appl. Math. 113, 401–410 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Marano S., Motreanu D.: Infinitely many critical points of non-differentiable functions and applications to a Neumann-type problem involving the p-Laplacian. J. Differ. Equ. 182, 108–120 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Clarke F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1993)

    Google Scholar 

  7. Alves C.O., Liu S.B.: On superlinear p(x)-Laplacian equations in \({\mathbb{R}^N}\) . Nonlinear Anal. 73, 2566–2579 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Naniewicz Z., Panagiotopoulos P.: Mathematical Theory of Hemivariational Inequalities and Applications. Marcel Dekker, New York (1995)

    Google Scholar 

  9. Dai G.W.: Infinitely many solutions for a differential inclusion problem in \({\mathbb{R}^N}\) involving the p(x)-Laplacian. Nonlinear Anal. 71, 1116–1123 (2009)

    Article  MATH  Google Scholar 

  10. Ge B., Xue X.P., Zhou Q.M.: The existence of radial solutions for differential inclusion problems in \({\mathbb{R}^N}\) involving the p(x)-Laplacian. Nonlinear Anal. 73, 622–633 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kristály A.: Infinitely many solutions for a differential inclusion problem in \({\mathbb{R}^N}\) . J. Differ. Equ. 220, 511–530 (2006)

    Article  MATH  Google Scholar 

  12. Růžička M.: Electrorheological Fluids: Modeling and Mathematical Theory. Springer, Berlin (2000)

    MATH  Google Scholar 

  13. Zhikov V.V.: Averaging of functionals of the calculus of variations and elasticity theory. Math. USSR. Izv. 9, 33–66 (1987)

    Article  Google Scholar 

  14. Harjulehto P., Hästö P., Latvala V.: Minimizers of the variable exponent, non-uniformly convex Dirichlet energy. J. Math. Pures Appl. 89, 174–197 (2008)

    MathSciNet  MATH  Google Scholar 

  15. Chen Y., Levine S., Rao M.: Variable exponent linear growth functionals in image restoration. SIAM J. Appl. Math. 66, 1383–1406 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Antontsev S.N., Rodrigues J.F.: On stationary thermo-rheological viscous flows. Ann. Univ. Ferrara Sez. VII. Sci. Math. 52, 19–36 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Antontsev S.N., Shmarev S.I.: A model porous medium equation with variable exponent of nonlinearity: Existence uniqueness and localization properties of solutions. Nonlinear Anal. 60, 515–545 (2005)

    MathSciNet  MATH  Google Scholar 

  18. Edmunds D., Rkosnk J.: Sobolev embedding with variable exponent. Studia Math. 143, 267–293 (2000)

    MathSciNet  MATH  Google Scholar 

  19. Fan X., Shen J., Zhao D.: Sobolev embedding theorems for spaces W k,p(x)(Ω). J. Math. Anal. Appl. 262, 749–760 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kovacik O., Rakosuik J.: On spaces L p(x)(Ω) and W k,p(x)(Ω). Czechoslov. Math. J. 41, 592–618 (1991)

    Google Scholar 

  21. Fan X.L., Zhao D.: On the spaces L p(x)(Ω) and W m,p(x)(Ω). J. Math. Anal. Appl. 263, 424–446 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fan X.L., Zhang Q.H.: Existence of solutions for p(x)-laplacian Dirichlet problem. Nonlinear Anal. 52, 1843–1853 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Molchanov A.M.: On the discreteness of the spectrum conditions for selfadjoint differential equations of the second order. Trudy Mosk. Matem. Obshchestva. 2, 169–199 (1953) (in Russian)

    MATH  Google Scholar 

  24. Chang K.C.: Critical Point Theory and Applications. Shanghai Scientific and Technology Press, Shanghai (1996)

    Google Scholar 

  25. Marcus M., Mizel V.: Every superposition operator mapping one Sobolev space into another is continuous. J. Funct. Anal. 33, 217–229 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lindqvist P.: On the equation div\({(|\nabla u|^{p-2}\nabla u)+\lambda|u|^{p-2}u=0}\) . Proc. Am. Math. Soc. 109(1), 157–164 (1990)

    MathSciNet  MATH  Google Scholar 

  27. Peral, I.: Some results on quasilinear elliptic equations: growth versus shape. Nonlinear Funct. Anal. Appl. Differ. Equ. (Trieste, 1997). World Sci. Publ. pp. 153–202 (1998)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Ge.

Additional information

Supported by the National Science Fund (grant 111262861, 10971043, 11001063), China Postdoctoral Science Foundation Funded Project (No. 20110491032), the Fundamental Research Funds for the Central Universities (HEUCF20111134), Heilongjiang Province foundation for distinguished young scholars (JC200810), program of excellent team in Harbin Institute of Technology and the Natural Science Foundation of Heilongjiang Province (No.A200803).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ge, B., Zhou, QM. & Xue, XP. Infinitely many solutions for a differential inclusion problem in \({\mathbb{R}^N}\) involving p(x)-Laplacian and oscillatory terms. Z. Angew. Math. Phys. 63, 691–711 (2012). https://doi.org/10.1007/s00033-012-0192-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-012-0192-1

Mathematics Subject Classification (2010)

Keywords

Navigation