Skip to main content
Log in

On the dissipative effect of a magnetic field in a Mindlin-Timoshenko plate model

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper we are concerned with a linear model for the magnetoelastic interactions in a two-dimensional electrically conducting Mindlin-Timoshenko plate. The magnetic field that permeates the plate consists of a non-stationary part and a uniform (constant) part. When the uniform magnetic field is aligned with the mid-plane of the plate, a strongly interactive system emerges with direct coupling between the elastic field and the magnetic field occurring in all the equations of the system. The unique solvability of the model is established within the framework of semigroup theory. Spectral analysis methods are used to show strong asymptotic stability and determine the polynomial decay rate of weak solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alabau-Boussouira F., Cannarsa P., Komornik V.: Indirect internal stabilization of weakly coupled evolution equations. J. Evol. Equ. 2, 127–150 (2002)

    Article  MathSciNet  Google Scholar 

  2. Batista M.: An elementary derivation of basic equations of the Reissner and Mindlin plate theories. Eng. Struct. 32, 906–909 (2010)

    Article  Google Scholar 

  3. Batty C.J.K., Duyckaerts T.: Non-uniform stability for bounded semi-groups on Banach spaces. J. Evol. Equ. 8, 765–780 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Benchimol C.D.: A note on weak stabilization of contraction semi-groups. SIAM J. Control Optim. 16, 373–379 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  5. Borichev A., Tomilov Y.: Optimal polynomial decay rate of functions and operator semigroups. Math. Ann. 347, 455–478 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Charão R.C., Oliveira J.C., Perla Menzala G.: Energy decay rates of magnetoelastic waves in a bounded conductive medium. Discrete. Contin. Dyn. Syst. Ser. A 25(3), 797–821 (2009)

    Article  MATH  Google Scholar 

  7. Dunkin J.W., Eringen A.C.: On the propagation of waves in an electromagnetic elastic solid. Int. J. Engrg. Sci. 1, 461–495 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  8. Duvaut G., Lions J.-L.: Inéquations en thermoélasticité et magnéto-hydrodynamique. Arch. Ration. Mech. Anal. 16, 241–279 (1972)

    MathSciNet  Google Scholar 

  9. Duyckaerts T.: Stabilisation haute fréquence d’équationes aux derivées partielles linéaires, Thèse de Doctorat. Université Paris XI, Orsay (2004)

    Google Scholar 

  10. Fernandes A., Pouget J.: An accurate modelling of piezoelectric multi-layer plates. Eur. J. Mech. 21, 629–651 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fernández Sare H.D.: On the stability of Mindlin-Timoshenko plates. Quart. Appl. Math. LXVII(2), 249–263 (2009)

    Google Scholar 

  12. Foias C., Temam R.: Remarques sur équations de Navier-Stokes stationnaires et les phenomènes successifs de bifuracation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 4(5, no. 1), 28–63 (1978)

    MathSciNet  Google Scholar 

  13. Grobbelaar-Van Dalsen M.: Uniform stabilization of a nonlinear structural acoustic model with a Timoshenko beam interface. Math. Meth. Appl. Sci. 29, 1749–1766 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Grobbelaar-Van Dalsen M.: On a structural acoustic model which incorporates shear and thermal effects in the structural component. J. Math. Anal. Appl. 341, 1253–1270 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Grobbelaar-Van Dalsen M.: Strong stabilization of a structural acoustic model which incorporates shear and thermal effects in the structural component. Math. Meth. Appl. Sci. 33, 1433–1445 (2010)

    MathSciNet  MATH  Google Scholar 

  16. Grobbelaar-Van Dalsen M.: Strong stabilization of models incorporating the thermoelastic Reissner-Mindlin plate equations with second sound. Appl. Anal. 90, 1419–1449 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Huang F.L.: Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces. Ann. Differ. Equ. 1, 43–56 (1985)

    MATH  Google Scholar 

  18. Jiang S., Racke R.: Evolution Equations in Thermoelasticity, Monographs and Surveys in Pure and Applied Mathematics. Chapman & Hall/CRC, London (2000)

    Google Scholar 

  19. Kim J.U., Renardy Y.: Boundary control of the Timoshenko beam. SIAM J. Control Optim. 25, 1417–1429 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  20. Krommer M.: Piezoelectric vibrations of composite Reissner-Mindlin type plates. J. Sound Vib. 263, 871–891 (2003)

    Article  Google Scholar 

  21. Lagnese J.: Boundary Stabilization of Thin Plates, SIAM Studies in Applied Mathematics. SIAM, Philadelphia (1989)

    Book  Google Scholar 

  22. Liu Z., Rao B.: Characterization of polynomial decay rates for the solution of linear evolution equation. Z. Angew. Math. Phys. 56, 630–644 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu Z., Rao B.: Energy decay rate of the thermoelastic Bresse system. Z. Angw. Math. Phys. 60, 54–69 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu Z., Rao B.: Frequency domain approach for the polynomial stability of a system of partially damped wave equations. J. Math. Anal. Appl. 335, 860–881 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mindlin R.D.: Influence of rotary inertia and shear on flexural motions of isotropic elastic plates. J. Appl. Mech. 18, 31–38 (1951)

    MATH  Google Scholar 

  26. Mindlin R.D.: Thickness-shear and flexural vibrations of crystal plates. J. Appl. Phys. 22, 316–323 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mindlin R.D.: Forced thickness-shear and flexural vibrations of piezoelectric crystal plates. J. Appl. Phys. 23, 83–88 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  28. Munoz Rivera J.E., Racke R.: Polynomial stability in two-dimensional magneto-elasticity. IMA J. Appl. Math. 66, 359–384 (2001)

    Article  MathSciNet  Google Scholar 

  29. Munoz Rivera J.E., Racke R.: Global stability for damped Timoshenko systems. Discret. Contin. Dyn. Syst. Ser. B 9(6), 1625–1639 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Munoz Rivera J.E., Portillo Oquendo H.: Asymptotic behavior on a Mindlin-Timoshenko plate with viscoelastic dissipation of memory type on the boundary. Funkcial. Ekvac. 46, 363–382 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Munoz Rivera J.E., de Lima Santos M.: Polynomial stability to three-dimensional magnetoelastic waves. Acta Appl. Math. 76, 265–281 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  32. Paria G.: On magneto-thermo-elastic plane waves. Proc. Cambr. Phil. Soc. 58, 527–531 (1962)

    Article  MathSciNet  Google Scholar 

  33. Pazy A.: Semigroups of linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences. Springer, New York (1983)

    Book  Google Scholar 

  34. Perla Menzala G., Zuazua E.: Energy decay of magnetoelastic waves in a bounded conductive medium. Asymptot. Anal. 18, 349–362 (1998)

    MathSciNet  MATH  Google Scholar 

  35. Prüss J.: On the spectrum of C 0 semigroups. Trans. Amer. Math. Soc. 284, 847–857 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  36. Purushotham C.M.: Magneto-elastic coupling effects on the propagation of harmonic waves in an electrically conducting elastic plate. Proc. Cambr. Phil. Soc. 63, 503–511 (1967)

    Article  MATH  Google Scholar 

  37. Raposo C.A., Ferreira J., Santos M.L., Castro N.N.O.: Exponential stability for the Timoshenko system with two weak dampings. Appl. Math. Lett. 7, 535–541 (2005)

    Article  MathSciNet  Google Scholar 

  38. Reissner E.: On the theory of bending of elastic plates. J. Math. Phys. 23, 184–191 (1944)

    MathSciNet  MATH  Google Scholar 

  39. Sermange M., Temam R.: Some mathematical questions related to the MHD equations. Comm. Pure Appl. Math. 36, 635–664 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  40. Shindo Y., Shindo T., Horiguchi K.: Scattering of flexural waves by a cracked Mindlin plate of soft ferromagnetic material in a uniform magnetic field. Theoret. Appl. Fract. Mech. 34, 167–184 (2000)

    Article  Google Scholar 

  41. Sweers G., Zuazua E.: On the non-existence of some special eigenfunctions for the Dirichlet Laplacian and the Lamé system. J. Elast. 52, 111–120 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  42. Timoshenko S.: On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Phil. Mag. 41, 744–746 (1921)

    Article  Google Scholar 

  43. Wang C.M., Lim G.T., Reddy J.N., Lee K.H.: Relationships between bending solutions of Reissner and Mindlin plate theories. Eng. Struct. 23, 838–849 (2001)

    Article  Google Scholar 

  44. Wehbe A., Youssef W.: Stabilization of the uniform Timoshenko beam by one locally distributed feedback. Appl. Anal. 88, 1067–1078 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wehbe A., Youssef W.: Exponential and polynomial stability of an elastic Bresse system with two locally distributed feedbacks. J. Math. Phys. 51, 103523-1–103523-17 (2010)

    MathSciNet  Google Scholar 

  46. Willson A.J.: The propagation of magneto-thermo-elastic plane waves. Proc. Cambr. Phil. Soc. 59, 483–488 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  47. Yang J.S.: Equations for elastic plates with partially electroded piezoelectric actuators in flexure with shear deformation and rotary inertia. J. Intell. Mat. Syst. Struct. 8, 444–451 (1997)

    Article  Google Scholar 

  48. Yang J.S.: Equations for elastic plates with partially electroded piezoelectric actuators and higher order electric fields. Smart Mat. Struct. 8, 73–82 (1999)

    Article  Google Scholar 

  49. Yang J.S., Yang X., Turner A., Kopinski J.A., Pastore R.A.: Two-dimensional equations for electrostatic plates with relatively large shear deformations. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 765–771 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marié Grobbelaar-Van Dalsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grobbelaar-Van Dalsen, M. On the dissipative effect of a magnetic field in a Mindlin-Timoshenko plate model. Z. Angew. Math. Phys. 63, 1047–1065 (2012). https://doi.org/10.1007/s00033-012-0206-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-012-0206-z

Mathematics Subject Classification

Keywords

Navigation