Skip to main content
Log in

Modeling the onset of shear boundary layers in fibrous composite reinforcements by second-gradient theory

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

It has been known since the pioneering works by Piola, Cosserat, Mindlin, Toupin, Eringen, Green, Rivlin and Germain that many micro-structural effects in mechanical systems can be still modeled by means of continuum theories. When needed, the displacement field must be complemented by additional kinematical descriptors, called sometimes microstructural fields. In this paper, a technologically important class of fibrous composite reinforcements is considered and their mechanical behavior is described at finite strains by means of a second-gradient, hyperelastic, orthotropic continuum theory which is obtained as the limit case of a micromorphic theory. Following Mindlin and Eringen, we consider a micromorphic continuum theory based on an enriched kinematics constituted by the displacement field u and a second-order tensor field ψ describing microscopic deformations. The governing equations in weak form are used to perform numerical simulations in which a bias extension test is reproduced. We show that second-gradient energy terms allow for an effective prediction of the onset of internal shear boundary layers which are transition zones between two different shear deformation modes. The existence of these boundary layers cannot be described by a simple first-gradient model, and its features are related to second-gradient material coefficients. The obtained numerical results, together with the available experimental evidences, allow us to estimate the order of magnitude of the introduced second-gradient coefficients by inverse approach. This justifies the need of a novel measurement campaign aimed to estimate the value of the introduced second-gradient parameters for a wide class of fibrous materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aifantis E.C.: On the role of gradients in the localization of deformation and fracture. Int. J. Eng. Sci. 30(10), 1279–1299 (1992)

    Article  MATH  Google Scholar 

  2. Aimène Y., Vidal-Sallé E., Hagège B., Sidoroff F., Boisse P.: A hyperelastic approach for composite reinforcement large deformation analysis. J. Compos. Mater. 44(1), 5–26 (2010)

    Article  Google Scholar 

  3. Alibert J.-J., Seppecher P., Dell’Isola F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8(1), 51–73 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Altenbach H., Eremeyev V.A., Lebedev L.P., Rendón L.A.: Acceleration waves and ellipticity in thermoelastic micropolar media. Arch. Appl. Mech. 80(3), 217–227 (2010)

    Article  MATH  Google Scholar 

  5. Atai A.A., Steigmann D.J.: On the nonlinear mechanics of discrete networks. Arch. Appl. Mech. 67(5), 303–319 (1997)

    Article  MATH  Google Scholar 

  6. Balzani D., Neff P., Schröder J., Holzapfel G.A.: A polyconvex framework for soft biological tissues, adjustment to experimental data. Int. J. Solids Struct. 43, 6052–6070 (2006)

    Article  MATH  Google Scholar 

  7. Bleustein J.L.: A note on the boundary conditions of Toupin’s strain gradient-theory. Int. J. Solids Struct. 3, 1053–1057 (1967)

    Article  Google Scholar 

  8. Boehler J.P.: Introduction to the invariant formulation of anisotropic constitutive equations. In: Boehler, J.P. (eds) Applications of Tensor Functions in Solid Mechanics CISM Course No. 292, Springer, Berlin (1987)

    Chapter  Google Scholar 

  9. Boehler J.P.: Lois de comportement anisotrope des milieux continus. J. Méc. 17, 70–153 (1978)

    MathSciNet  Google Scholar 

  10. Boisse P., Cherouat A., Gelin J.C., Sabhi H.: Experimental study and finite element simulation of glass fiber fabric shaping process. Polym. Compos. 16(1), 83–95 (1995)

    Article  Google Scholar 

  11. Cao J., Akkerman R., Boisse P., Chen J. et al.: Characterization of mechanical behavior of woven fabrics: experimental methods and benchmark results. Compos. Part A Appl. Sci. Manuf. 39, 1037–1053 (2008)

    Article  Google Scholar 

  12. Casal P.: La théorie du second gradient et la capillarité. C. R. Acad. Sci. Paris Ser. A 274, 1571–1574 (1972)

    MATH  MathSciNet  Google Scholar 

  13. Charmetant A., Vidal-Sallé E., Boisse P.: Hyperelastic modelling for mesoscopic analyses of composite reinforcements. Compos. Sci. Technol. 71, 1623–1631 (2011)

    Article  Google Scholar 

  14. Charmetant A., Orliac J.G., Vidal-Sallé E., Boisse P.: Hyperelastic model for large deformation analyses of 3D interlock composite preforms. Compos. Sci. Technol. 72, 1352–1360 (2012)

    Article  Google Scholar 

  15. Cosserat, E., Cosserat, F.: Théorie de Corps déformables. Librairie Scientifique A. Hermann et fils, Paris (1909)

  16. deGennes P.G.: Some effects of long range forces on interfacial phenomena. J. Phys. Lett. 42, L377–L379 (1981)

    Article  Google Scholar 

  17. dell’Isola F., Gouin H., Seppecher P.: Radius and surface tension of microscopic bubbles by second gradient theory. C. R. Acad. Sci. II Mech. 320, 211–216 (1995)

    MATH  Google Scholar 

  18. dell’Isola F., Rotoli G.: Validity of Laplace formula and dependence of surface tension on curvature in second gradient fluids. Mech. Res. Commun. 22, 485–490 (1995)

    Article  MATH  Google Scholar 

  19. dell’Isola F., Seppecher P.: The relationship between edge contact forces, double force and interstitial working allowed by the principle of virtual power. C.R. Acad. Sci. II Mech. Phys. Chim. Astron. 321, 303–308 (1995)

    MATH  Google Scholar 

  20. dell’Isola F., Gouin H., Rotoli G.: Nucleation of Spherical shell-like interfaces by second gradient theory: numerical simulations. Eur. J. Mech. B Fluids 15(4), 545–568 (1996)

    MATH  Google Scholar 

  21. dell’Isola F., Seppecher P.: Edge contact forces and quasi-balanced power. Meccanica 32, 33–52 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  22. dell’Isola F., Guarascio M., Hutter K.: A variational approach for the deformation of a saturated porous solid. A second-gradient theory extending Terzaghi’s effective stress principle. Arch. Appl. Mech. 70, 323–337 (2000)

    Article  MATH  Google Scholar 

  23. dell’Isola F., Sciarra G., Vidoli S.: Generalized Hooke’s law for isotropic second gradient materials. Proc. R. Soc. Lond. A 465, 2177–2196 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  24. dell’Isola F., Madeo A., Placidi L.: Linear plane wave propagation and normal transmission and reflection at discontinuity surfaces in second gradient 3D Continua. Zeitschrift fur Angewandte Mathematik und Mechanik (ZAMM) 92(1), 52–71 (2012)

    MATH  MathSciNet  Google Scholar 

  25. dell’Isola F., Seppecher P., Madeo A.: How contact interactions may depend on the shape of Cauchy cuts in N-th gradient continua: approach “à la D’Alembert”. ZAMP 63(6), 1119–1141 (2012)

    MATH  MathSciNet  Google Scholar 

  26. Dumont J.P., Ladeveze P., Poss M., Remond Y.: Damage mechanics for 3-D composites. Compos. Struct. 8(2), 119–141 (1987)

    Article  Google Scholar 

  27. Eremeyev V.A., Lebedev L.P., Altenbach H.: Foundations of Micropolar Mechanics. Springer, Heidelberg (2013)

    Book  MATH  Google Scholar 

  28. Eremeyev V.A.: Acceleration waves in micropolar elastic media. Doklady Phys. 50(4), 204–206 (2005)

    Article  Google Scholar 

  29. Eringen A.C.: Microcontinuum Field Theories. Springer, New York (2001)

    MATH  Google Scholar 

  30. Eringen A.C., Suhubi E.S.: Nonlinear theory of simple microelastic solids: I. Int. J. Eng. Sci. 2, 189–203 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  31. Eringen A.C., Suhubi E.S.: Nonlinear theory of simple microelastic solids: II. Int. J. Eng. Sci. 2, 389–404 (1964)

    Article  MathSciNet  Google Scholar 

  32. Forest S., Sievert R.: Nonlinear microstrain theories. Int. J. Solids Struct. 43, 7224–7245 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  33. Forest S.: Micromorphic approach for gradient elasticity, viscoplasticity, and damage. J. Eng. Mech. 135(3), 117–131 (2009)

    Article  Google Scholar 

  34. Forest S., Aifantis E.C.: Some links between recent gradient thermo-elasto-plasticity theories and the thermomechanics of generalized continua. Int. J. Solids. Struct. 47(25–26), 3367–3376 (2010)

    Article  MATH  Google Scholar 

  35. Germain P.: La méthode des puissances virtuelles en mécanique des milieux continus. Première partie. Théorie du second gradient. J. Mécanique 12, 235–274 (1973)

    MATH  MathSciNet  Google Scholar 

  36. Germain P.: The method of virtual power in continuum mechanics. Part 2: Microstructure. SIAM J. Appl. Math. 25, 556–575 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  37. Green A.E., Rivlin R.S.: Multipolar continuum mechanics. Arch. Ration. Mech. Anal. 17(2), 113–147 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  38. Hamila N., Boisse P.: Tension locking in finite-element analyses of textile composite reinforcement deformation. Comptes Rendus Mécanique 341(6), 508–519 (2013)

    Article  Google Scholar 

  39. Hamila, N., Boisse, P.: Locking in simulation of composite reinforcement deformations. Analysis and treatment. Compos. Part A Appl. Sci. Manuf., doi:10.1016/j.compositesa.2013.06.001 (2013)

  40. Harrison P., Clifford M.J., Long A.C.: Shear characterisation of viscous woven textile composites: a comparison between picture frame and bias extension experiments. Compos. Sci. Technol. 64, 1453–1465 (2004)

    Article  Google Scholar 

  41. Haseganu E.M., Steigmann D.J.: Equilibrium analysis of finitely deformed elastic networks. Comput. Mech. 17(6), 359–373 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  42. Holzapfel G.A., Gasser T.C., Ogden R.W.: A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61, 1–48 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  43. Holzapfel G.A.: Nonlinear Solid Mechanics. Wiley, New York (2000)

    MATH  Google Scholar 

  44. Itskov M., Aksel N.: A class of orthotropic and transversely isotropic hyperelastic constitutive models based on a polyconvex strain energy function. Int. J. Solids Struct. 41, 3833–3848 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  45. Itskov M.: On the theory of fourth-order tensors and their applications in computational mechanics. Comput. Methods Appl. Mech. Eng. 189(2), 419–438 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  46. Lasry D., Belytschko T.: Localization limiters in transient problems. Int. J. Solids Struct. 24(6), 581–597 (1988)

    Article  MATH  Google Scholar 

  47. Lee W., Padvoiskis J., Cao J., de Luycker E., Boisse P., Morestin F., Chen J., Sherwood J.: Bias-extension of woven composite fabrics. Int. J. Mater. Form. Suppl 1, 895–898 (2008)

    Article  Google Scholar 

  48. Luongo A.: On the amplitude modulation and localization phenomena in interactive buckling problems. Int. J. Solids Struct. 27(15), 1943–1954 (1991)

    Article  MATH  Google Scholar 

  49. Luongo A.: Mode localization in dynamics and buckling of linear imperfect continuous structures. Nonlinear Dyn. 25(1), 133–156 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  50. Luongo A., D’Egidio A.: Bifurcation equations through multiple-scales analysis for a continuous model of a planar beam. Nonlinear Dyn. 41(1), 171–190 (2005)

    Article  MATH  Google Scholar 

  51. Madeo A., George D., Lekszycki T., Nieremberger M., Rémond Y.: A second gradient continuum model accounting for some effects of micro-structure on reconstructed bone remodelling. CRAS Mécanique 340(8), 575–589 (2012)

    Article  Google Scholar 

  52. Madeo A., dell’Isola F., Ianiro N., Sciarra G.: A variational deduction of second gradient poroelasticity II: an application to the consolidation problem. J. Mech. Mater. Struct. 3(4), 607–625 (2008)

    Article  Google Scholar 

  53. Madeo A., dell’Isola F., Ianiro N., Sciarra G.: A variational deduction of second gradient poroelasticity II: an application to the consolidation problem. J. Mech. Mater. Struct. 3(4), 607–625 (2008)

    Article  Google Scholar 

  54. Madeo, A., Djeran-Maigre, I., Rosi, G., Silvani, C.: The effect of fluid streams in porous media on acoustic compression wave propagation, transmission and reflection. Contin. Mech. Thermodyn. doi:10.1007/s00161-012-0236-y (2012)

  55. Makradi A., Ahzi S., Garmestani H., Li D.S., Rémond Y.: Statistical continuum theory for the effective conductivity of fiber filled polymer composites: effect of orientation distribution and aspect ratio A Mikdam. Compos. Sci. Technol. 70(3), 510–517 (2010)

    Article  Google Scholar 

  56. Mikdam A., Makradi A., Ahzi S., Garmestani H., Li D.S., Rémond Y.: Effective conductivity in isotropic heterogeneous media using a strong-contrast statistical continuum theory. J. Mech. Phys. Solids 57(1), 76–86 (2009)

    Article  MATH  Google Scholar 

  57. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)

    Google Scholar 

  58. Nadler B., Steigmann D.J.: A model for frictional slip in woven fabrics. Comptes Rendus Mecanique 331(12), 797–804 (2003)

    Article  MATH  Google Scholar 

  59. Nadler B., Papadopoulos P., Steigmann D.J.: Multiscale constitutive modeling and numerical simulation of fabric material. Int. J. Solids Struct. 43(2), 206–221 (2006)

    Article  MATH  Google Scholar 

  60. Neff, P.: Private communication

  61. Ogden R.W.: Non-linear elastic deformations. Wiley, New York (1984)

    Google Scholar 

  62. Ogden R.W.: Nonlinear elasticity, anisotropy, material stability and residual stresses in soft tissue. CISM Courses Lect. Ser. 441, 65–108 (2003)

    Google Scholar 

  63. Peng, X., Guo, Z., Du, T., Yu, W.R.: A simple anisotropic hyperelastic constitutive model for textile fabrics with application to forming simulation. Composites Part B (2013) doi:10.1016/j.compositesb.2013.04.014

  64. Pietraszkiewicz W., Eremeyev V.A.: On natural strain measures of the non-linear micropolar continuum. Int. J. Solids Struct. 46(3), 774–787 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  65. Oshmyan V.G., Patlazhan S.A., Rémond Y.: Principles of structural-mechanical modeling of polymers and composites. Polym. Sci. Ser. A 48(9), 1004–1013 (2006)

    Article  Google Scholar 

  66. Pideri C., Seppecher P.: A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium. Contin. Mech. Thermodyn. 9(5), 241–257 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  67. Piola, G.: Memoria intorno alle equazioni fondamentali del movimento di corpi qualsivogliono considerati secondo la naturale loro forma e costituzione. Modena, Tipi del R.D. Camera (1846)

  68. Placidi, L., Rosi, G., Giorgio, I., Madeo, A.: Reflection and transmission of plane waves at surfaces carrying material properties and embedded in second gradient materials. Math. Mech. Solids, doi:10.1177/1081286512474016 (2013)

  69. Raoult A.: Symmetry groups in nonlinear elasticity: an exercise in vintage mathematics. Commun. Pure Appl. Anal. 8(1), 435–456 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  70. Rinaldi A., Krajcinovic K., Peralta P., Lai Y.-C.: Modeling polycrystalline microstructures with lattice models: a quantitative approach. Mech. Mater. 40, 17–36 (2008)

    Article  Google Scholar 

  71. Rinaldi A.: A rational model for 2D disordered lattices under uniaxial loading. Int. J. Damage Mech. 18, 233–257 (2009)

    Article  Google Scholar 

  72. Rinaldi A., Lai Y.C.: Damage theory of 2D disordered lattices: energetics and physical foundations of damage parameter. Int. J. Plast. 23, 1796–1825 (2007)

    Article  MATH  Google Scholar 

  73. Rinaldi A.: Statistical model with two order parameters for ductile and soft fiber bundles in nanoscience and biomaterials. Phys. Rev. E 83(4–2), 046126 (2011)

    Article  Google Scholar 

  74. Rinaldi A.: Bottom-up modeling of damage in heterogeneous quasi-brittle solids. Contin. Mech. Thermodyn. 25(2–4), 359–373 (2013)

    Article  Google Scholar 

  75. Rinaldi A., Krajcinovic D., Mastilovic S.: Statistical damage mechanics and extreme value theory. Int. J. Damage Mech. 16(1), 57–76 (2007)

    Article  Google Scholar 

  76. Rosi G., Madeo A., Guyader J.-L.: Switch between fast and slow Biot compression waves induced by second gradient microstructure at material discontinuity surfaces in porous media. Int. J. Solids Struct. 50(10), 1721–1746 (2013)

    Article  Google Scholar 

  77. Schröder J., Balzani D., Neff P.: A variational approach for materially stable anisotropic hyperelasticity. Int. J. Solids Struct. 42, 4352–4371 (2005)

    Article  MATH  Google Scholar 

  78. Sciarra G., dell’Isola F., Coussy O.: Second gradient poromechanics. Int. J. Solids Struct. 44(20), 6607–6629 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  79. Sciarra G., dell’Isola F., Ianiro N., Madeo A.: A variational deduction of second gradient poroelasticity I: general theory. J. Mech. Mater. Struct. 3(3), 507–526 (2008)

    Article  Google Scholar 

  80. Sciarra G., dell’Isola F., Ianiro N., Madeo A.: A variational deduction of second gradient poroelasticity I: general theory. J. Mech. Mater. Struct. 3(3), 507–526 (2008)

    Article  Google Scholar 

  81. Seppecher, P., Alibert, J.-J., dell’Isola, F.: Linear elastic trusses leading to continua with exotic mechanical interactions. In: Journal of Physics: Conference Series, vol. 319 (2011)

  82. Spencer, A.J.M.: Constitutive theory for strongly anisotropic solids In: Spencer, A.J.M. (Ed.) Continuum Theory of Fibre- Reinforced Composites, CISM International Centre for Mechanical Sciences Courses and Lecture Notes, 282. Springer (1984)

  83. Steigmann D.J.: Equilibrium of prestressed networks. IMA J. Appl. Math. (Institute of Mathematics and Its Applications) 48(2), 195–215 (1992)

    MATH  MathSciNet  Google Scholar 

  84. Steigmann D.J.: Invariants of the stretch tensors and their application to finite elasticity theory. Math. Mech. Solids 7(4), 393–404 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  85. Steigmann D.J.: Frame-invariant polyconvex strain-energy functions for some anisotropic solids. Math. Mech. Solids 8(5), 497–506 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  86. Toupin R.: Theories of elasticity with couples-stress. Arch. Ration. Mech. Anal. 17, 85–112 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  87. Triantafyllidis N., Aifantis E.C.A.: Gradient approach to localization of deformation. I. Hyperelastic materials. J. Elast. 16(3), 225–237 (1986)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Madeo.

Additional information

The authors thank INSA-Lyon for the financial support assigned to the project BQR 2013-0054 “Matériaux Méso et Micro-Hétérogènes: Optimisation par Modèles de Second Gradient et Applications en Ingénierie.”

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferretti, M., Madeo, A., dell’Isola, F. et al. Modeling the onset of shear boundary layers in fibrous composite reinforcements by second-gradient theory. Z. Angew. Math. Phys. 65, 587–612 (2014). https://doi.org/10.1007/s00033-013-0347-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-013-0347-8

Mathematics Subject Classification

Keywords

Navigation