Skip to main content
Log in

Equilibrium configurations and stability of a damaged body under uniaxial tractions

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

This paper deals with the equilibrium problem in nonlinear dissipative inelasticity of damaged bodies subject to uniaxial loading. To model the damage effects, a damage function, affecting the stored energy function, is defined. In the framework of the continuum thermodynamics theory, the constitutive law for damaged hyperelastic materials and an inequality for the energy release rate are derived. By means of an energy-based damage criterion, the irreversible evolution law for the damage function is obtained. After formulating the equilibrium boundary value problem, explicit expressions governing the global development of the equilibrium paths are written. Successively, the stability of the equilibrium solutions are assessed through the energy criterion. For a damaged body under uniaxial loading, seven inequalities are derived. These conditions, if fulfilled, ensure the stability of the solutions under each type of small perturbation. Finally, a number of applications for compressible neo-Hookean and Mooney–Rivlin materials are performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kachanov, L.M.: On time to rupture in creep conditions. Izn. Akad. Nauk. S.S.R. Otd. Tech. Nauk. 8, 26–31 (1958) (in Russian)

    Google Scholar 

  2. Chaboche J.L.: Continuous damage mechanics. A tool to describe phenomena before crack initiation. Nucl. Eng. Des. 64, 233–247 (1981)

    Article  Google Scholar 

  3. Chaboche J.L.: Continuum damage mechanics: present state and future trends. Nucl. Eng. Des. 105, 19–33 (1987)

    Article  Google Scholar 

  4. Lemaitre, J.: A continuous damage mechanics. Fracture in creep conditions. Mechanika Teoretyczna i Stosowana 1–2, 29–48 (1982) (in Polish)

  5. Lemaitre J.: How to use damage mechanics. Nucl. Eng. Des. 80, 233–245 (1984)

    Article  Google Scholar 

  6. Lemaitre J.: A continuous damage mechanics. Model for ductile fracture. J. Eng. Mater. Technol. 107, 83–89 (1985)

    Article  Google Scholar 

  7. Krajcinovic D.: Continuum damage mechanics. Appl. Mech. Rev. 37, 1–32 (1984)

    Google Scholar 

  8. Voyiadjis, G.Z., Ju, J.W., Chaboche, J.L. (eds.): Damage Mechanics in Engineering Materials, Studies in Applied Mathematics, vol. 46. Elsevier, Amsterdam (1998)

    Google Scholar 

  9. Flory P.J., Rabjohn N., Shaffer M.C.: Dependence of elastic properties of vulcanized rubber on the degree of cross linking. J. Polym. Sci. 4, 225–245 (1949)

    Article  Google Scholar 

  10. Smith T.L.: Dependence of the ultimate properties of a GR–S rubber on strain rate and temperature. J. Polym. Sci. 32, 99–113 (1958)

    Article  Google Scholar 

  11. Smith T.L.: Ultimate tensile properties of elastomers. I. Characterization by a time and temperature independent failure envelope. J. Polym. Sci. Part A 1, 3597–3615 (1963)

    Google Scholar 

  12. Bueche F.: Tensile strength of rubbers. J. Polym. Sci. 24, 189–200 (1957)

    Article  Google Scholar 

  13. Taylor G.R., Darin S.R.: The tensile strength of elastomers. J. Polym. Sci. 17, 511–525 (1955)

    Article  Google Scholar 

  14. Mullins L.: Softening of rubber by deformation. Rubber Chem. Technol. 42, 339–362 (1969)

    Article  Google Scholar 

  15. Mullins L., Tobin N.R.: Theoretical model for the elastic behavior of filled-reinforced vulcanized rubbers. Rubber Chem. Technol. 30, 551–571 (1957)

    Google Scholar 

  16. Gurtin M.E., Francis E.C.: Simple rate-independent model for damage. J. Spacecraft 18, 285–286 (1981)

    Article  Google Scholar 

  17. Simo J.C.: On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects. Comp. Meth. Appl. Mech. Eng. 60, 153–173 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  18. Simo J.C., Ju J.W.: Strain and stress based continuum damage models. I. Formulation. Int. J. Solids Struct. 23, 821–840 (1987)

    Article  MATH  Google Scholar 

  19. De Souza Neto E.A., Peric D., Owen D.R.J.: A phenomenological three-dimensional rate-independent continuum damage model for highly filled polymers: Formulation and computational aspects. J. Mech. Phys. Solids 42, 1533–1550 (1994)

    Article  MATH  Google Scholar 

  20. Miehe C.: Discontinuous and continuous damage evolution in Ogden-type large-strain elastic materials. Eur. J. Mech. A/Solids 14, 697–720 (1995)

    MATH  Google Scholar 

  21. Ogden R.W., Roxburgh D.G.: A pseudo-elastic model for the Mullins effect in filled rubber. Proc. R. Soc. Lond. A 455, 2861–2877 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  22. Simo J.C., Hughes T.J.R.: Computational Inelasticity. Springer, New York (1998)

    MATH  Google Scholar 

  23. Miehe C., Keck J.: Superimposed finite elastic-viscoelastic-plastoelastic stress response with damage in filled rubbery polymers. Experiments, modelling and algorithmic implementation. J. Mech. Phys. Solids 48, 323–365 (2000)

    Article  MATH  Google Scholar 

  24. Beatty M.F., Krishnaswamy S.: A theory of stress-softening in incompressible isotropic materials. J. Mech. Phys. Solids 48, 1931–1965 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  25. Chagnon G., Verron E., Gornet L., Marckmann G., Charrier P.: On the relevance of continuum damage mechanics as applied to the Mullins effect in elastomers. J. Mech. Phys. Solids 52, 1627–1650 (2004)

    Article  MATH  Google Scholar 

  26. Ayoub G., Zaïri F., Naït-Abdelaziz M., Gloaguen J.M.: Modelling large deformation behaviour under loading-unloading of semicrystalline polymers: application to a high density polyethylene. Int. J. Plast. 26, 329–347 (2010)

    Article  MATH  Google Scholar 

  27. Anand L., Aslan O., Chester S.A.: A large-deformation gradient theory for elastic–plastic materials: strain softening and regularization of shear bands. Int. J. Plast. 30(31), 116–143 (2012)

    Article  Google Scholar 

  28. Voyiadjis G.Z., Shojaei A., Li G.: A thermodynamic consistent damage and healing model for self healing materials. Int. J. Plast. 27, 1025–1044 (2011)

    Article  MATH  Google Scholar 

  29. Rajagopal K.R., Srinivasa A.R., Wineman A.S.: On the shear and bending of a degrading polymer beam. Int. J. Plast. 23, 1618–1636 (2007)

    Article  MATH  Google Scholar 

  30. Soares J.S., Moore J.E., Rajagopal K.R.: Constitutive framework for biodegradable polymers with applications to biodegradable stents. ASAIO J. 54(3), 295–301 (2008)

    Article  Google Scholar 

  31. Mielke A., Roubíček T.: Rate-independent damage processes in nonlinear inelasticity. Math. Models Methods Appl. Sci. (M3AS) 16, 177–209 (2006)

    Article  MATH  Google Scholar 

  32. Mielke A.: Evolution in rate-independent systems (Ch. 6). In: Dafermos, C.M., Feireisl, E. (eds.) Handbook of Differential Equations, Evolutionary Equations vol. 2, pp. 461–559. Elsevier B.V., Amsterdam (2005)

    Google Scholar 

  33. Lemaitre J., Chaboche J.L.: Mechanics of Solid Materials. University Press, Cambrige (1988)

    Google Scholar 

  34. Tarantino, A.M.: Equilibrium paths of a hyperelastic body under progressive damage. J. Elast. 112 (2013). doi:10.1007/s10659-013-9439-0. Published online: 20 Apr 2013

  35. Lanzoni, L., Tarantino, A.M.: Damaged hyperelastic membranes. Int. J. Nonlinear Mech. 60, 9–22 (2014). doi:10.1016/j.ijnonlinmec.2013.12.001

    Google Scholar 

  36. Tarantino A.M.: Thin hyperelastic sheets of compressible material: field equations, airy stress function and an application in fracture mechanics. J. Elast. 44, 37–59 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  37. Tarantino A.M.: The singular equilibrium field at the notch-tip of a compressible material in finite elastostatics. ZAMP J. Appl. Math. Phys. 48, 370–388 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  38. Tarantino A.M.: On extreme thinning at the notch-tip of a neo-Hookean sheet. Q. J. Mech. Appl. Math. 51(2), 179–190 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  39. Tarantino A.M.: On the finite motions generated by a mode I propagating crack. J. Elast. 57, 85–103 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  40. Tarantino A.M.: Dynamic crack propagation in sheets of compressible neo-Hookean material under general in-plane loading. Q. Appl. Math. 59(3), 479–492 (2001)

    MATH  MathSciNet  Google Scholar 

  41. Tarantino A.M.: Crack propagation in finite elastodynamics. Math. Mech. Solids 10, 577–601 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  42. Davison L., Stevens A.L., Kipp M.E.: Theory of spall damage accumulation in ductile metals. J. Mech. Phys. Solids 25, 11–28 (1977)

    Article  Google Scholar 

  43. Chaboche J.L.: Continuum damage mechanics, parts 1 and 2. J. Appl. Mech. 55, 59–72 (1988)

    Article  Google Scholar 

  44. Billardon R., Moret-Bailly L.: Fully coupled strain and damage finite element analysis of ductile fracture. Nucl. Eng. Des. 105, 43–49 (1987)

    Article  Google Scholar 

  45. Truesdell C.: The mechanical foundations of elasticity and fluid dynamics. J. Rat. Mech. Anal. 1, 125–300 (1952)

    MATH  MathSciNet  Google Scholar 

  46. Truesdell C., Toupin R.A.: The Classical Field Theories of Mechanics, Handbuch der Physik, ed. Flugge vol. III/1. Springer, Berlin (1960)

    Google Scholar 

  47. Coleman B.D., Gurtin M.E.: Thermodynamics with internal state variable. J. Chem. Phys. 47(2), 597–613 (1967)

    Article  Google Scholar 

  48. Tarantino A.M.: Asymmetric equilibrium configurations of symmetrically loaded isotropic square membranes. J. Elast. 69, 73–97 (2003)

    Article  MathSciNet  Google Scholar 

  49. Tarantino A.M.: Asymmetric equilibrium configurations of hyperelastic cylindrical bodies under symmetric dead loads. Q. Appl. Math. 64, 605–615 (2006)

    MATH  MathSciNet  Google Scholar 

  50. Tarantino A.M., Nobili A.: Constitutive branching analysis of cylindrical bodies under in-plane equibiaxial dead-load tractions. Int. J. Nonlinear Mech. 41, 958–968 (2006)

    Article  Google Scholar 

  51. Tarantino A.M., Nobili A.: Finite homogeneous deformations of symmetrically loaded compressible membranes. ZAMP J. Appl. Math. Phys. 58, 659–678 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  52. Rivlin R.S.: Large elastic deformations of isotropic materials, II. Some uniqueness theorems for pure homogeneous deformation. Philos. Trans. R. Soc. Lond. A 240, 491–508 (1948)

    Article  MathSciNet  Google Scholar 

  53. Chen Y.C.: Stability of homogeneous deformations of an incompressible elastic body under dead-load surface traction. J Elast. 17, 223–248 (1987)

    Article  MATH  Google Scholar 

  54. Ball J.M.: Differentiability properties of symmetric and isotropic functions. Duke Math. 51, 699–728 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  55. Ball J.M., Schaeffer D.G.: Bifurcation and stability of homogeneous equilibrium configurations of an elastic body under dead-load tractions. Proc. Camb. Philos. Soc. 94, 315–339 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  56. Tarantino A.M.: Homogeneous equilibrium configurations of a hyperelastic compressible cube under equitriaxial dead-load tractions. J. Elast. 92, 227–254 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  57. Ciarlet J.M., Geymonat G.: Sur les lois de comportement en élasticité non-linéaire compressible. C. R. Acad. Sci. Ser. II 295, 423–426 (1982)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Lanzoni.

Additional information

Dedicated to the memory of PIERO VILLAGGIO.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lanzoni, L., Tarantino, A.M. Equilibrium configurations and stability of a damaged body under uniaxial tractions. Z. Angew. Math. Phys. 66, 171–190 (2015). https://doi.org/10.1007/s00033-014-0397-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-014-0397-6

Mathematics Subject Classification

Keywords

Navigation