Skip to main content
Log in

Modeling of the interaction between bone tissue and resorbable biomaterial as linear elastic materials with voids

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, a continuum mixture model with evolving mass densities and porosity is proposed to describe the process of bone remodeling in the presence of bio-resorbable materials as driven by externally applied loads. From a mechanical point of view, both bone tissue and biomaterial are modeled as linear elastic media with voids in the sense of Cowin and Nunziato (J Elast 13:125-147, 1983). In the proposed continuum model, the change of volume fraction related to the void volume is directly accounted for by considering porosity as an independent kinematical field. The bio-mechanical coupling is ensured by the introduction of a suitable stimulus which allows for discriminating between resorption (of both bone and biomaterial) and synthesis (of the sole natural bone) depending on the level of externally applied loads. The presence of a ‘lazy zone’ associated with intermediate deformation levels is also considered in which neither resorption nor synthesis occur. Some numerical solutions of the integro-differential equations associated with the proposed model are provided for the two-dimensional case. Ranges of values of the parameters for which different percentages of biomaterial substitution occur are proposed, namely parameters characterizing initial and maximum values of mass densities of bone tissue and of the bio-resorbable material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andreaus U., Colloca M., Iacoviello D.: Optimal bone density distributions: Numerical analysis of the osteocyte spatial influence in bone remodeling. Comput. Methods Progr. Biomed. 113(1), 80–91 (2014)

    Article  Google Scholar 

  2. Andreaus, U., Giorgio, I., Lekszycki, T.: A 2-D continuum model of a mixture of bone tissue and bio-resorbable material for simulating mass density redistribution under load slowly variable in time. J. Applied Math and Mech. (ZAMM), pp. 1–23. (2013) doi:10.1002/zamm.201200182

  3. Andreaus U., Colloca M., Iacoviello D.: Modelling of trabecular architecture as result of an optimal control procedure, Chapter II. In: Andreaus, U., Iacoviello, D. Biomedical Imaging and Computational Modeling in Biomechanics, pp. 19--37. Springer, Berlin (2012)

  4. Andreaus U., Colloca M., Iacoviello D.: An optimal control procedure for bone adaptation under mechanical stimulus. Control Eng. Pract. 20, 575–583 (2012)

    Article  Google Scholar 

  5. Andreaus U., Colloca M., Iacoviello D., Pignataro M.: Optimal-tuning pid control of adaptive materials for structural efficiency. Struct. Multidiscip. Optim. 43, 43–59 (2011)

    Article  Google Scholar 

  6. Andreaus U., Colloca M.: Prediction of micromotion initiation of an implanted femur under physiological loads and constraints using the finite element method. Proc. Inst. Mech. Eng. Part H, J. Eng. Med. 223, 589–605 (2009)

    Article  Google Scholar 

  7. Andreaus U., Colloca M., Toscano A.: Mechanical behaviour of a prosthesized human femur: a comparative analysis between walking and stair climbing by using the finite element method. Biophys. Bioeng. Lett. 1, 1–15 (2008)

    Google Scholar 

  8. Andreaus U., dell’Isola F., Porfiri M.: Piezoelectric passive distributed controllers for beam flexural vibrations. J. Vib. Control 10, 625–659 (2004)

    Article  MATH  Google Scholar 

  9. Armentano I., Dottori M., Fortunati E., Mattioli S., Kenny J.M.: Biodegradable polymer matrix nanocomposites for tissue engineering: A review. Polym. Degrad. Stab. 95, 2126–2146 (2010)

    Article  Google Scholar 

  10. Beaupré G.S., Orr T.E., Carter D.R.: An approach for time-dependent bone modelling and remodelling-Theoretical development. J. Orthopaed. Res. 8, 651–661 (1990)

    Article  Google Scholar 

  11. Beaupré G.S., Orr T.E., Carter D.R.: An approach for time-dependent bone modelling and remodelling-application: A preliminary remodelling simulation. J. Orthopaed. Res. 8, 662–670 (1990)

    Article  Google Scholar 

  12. Carcaterra, A.: Theoretical modelling and simulations of a neuron-based micro-motor, ENOC 2011. In Proceedings of the 7th European Nonlinear Oscillations Conference, July 24–29, Roma (2011)

  13. Carcaterra A., Akay A.: Transient energy exchange between a primary structure and a set of oscillators: Return time and apparent damping. J. Acoust. Soc. Am. 115(2), 683–696 (2004)

    Article  Google Scholar 

  14. Carcaterra A.: An entropy formulation for the analysis of energy flow between mechanical resonators. Mech. Syst. Signal Process. 16(5), 905–920 (2002)

    Article  Google Scholar 

  15. Carter D.R., Hayes W.C.: The compressive behaviour of bone as a two-phase porous structure. J. Bone Jt. Surg. Am. 59, 954–962 (1977)

    Google Scholar 

  16. Casanova R., Moukoko D., Pithioux M., Pailler-Mattéi C., Zahouani H., Chabrand P.: Temporal evolution of skeletal regenerated tissue: What can mechanical investigation add to biological?. Med. Biol. Eng. Comput. 48, 811–819 (2010)

    Article  Google Scholar 

  17. Cazzani A., Ruge P.: Numerical aspects of coupling strongly frequency-dependent soil-foundation models with structural finite elements in the time-domain. Soil Dyn. Earthq. Eng. 37, 56–72 (2012)

    Article  Google Scholar 

  18. Cazzani A., Lovadina C.: On some mixed finite element methods for plane membrane problems. Comput. Mech. 20(6), 560–572 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  19. Cowin S.C., Nunziato J.W.: Linear elastic materials with voids. J. Elast. 13, 125–147 (1983)

    Article  MATH  Google Scholar 

  20. Cowin S.C., Goodman M.A.: A variational principle for granular materials. J. Appl. Math. Mech. (ZAMM) 56, 281–286 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  21. Contrafatto L., Cuomo M.: A globally convergent numerical algorithm for damaging elasto-plasticity based on the Multiplier method. Int. J. Numer. Methods Eng. 63(8), 1089–1125 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. Contro R., Poggi C., Cazzani A.: Numerical analysis of fire effects on beam structures. Eng. Comput. (Swansea, Wales) 5(1), 53–58 (1988)

    Article  Google Scholar 

  23. Culla A., Sestieri A., Carcaterra A.: Energy flow uncertainties in vibrating systems: Definition of a statistical confidence factor. Mech. Syst. Signal Process. 17(3), 635–663 (2003)

    Article  Google Scholar 

  24. Cuomo, M., Nicolosi, A.: A poroplastic model for hygro-chemo-mechanical damage of concrete. Computational Modelling of Concrete Structures—Proceedings of EURO-C (2006), pp. 533–542

  25. Cuomo M., Contrafatto L.: Stress rate formulation for elastoplastic models with internal variables based on augmented Lagrangian regularisation. Int. J. Solids Struct. 37(29), 3935–3964 (2000)

    Article  MATH  Google Scholar 

  26. Cuomo M., Ventura G.: Complementary energy approach to contact problems based on consistent augmented Lagrangian formulation. Math. Comput. Model. 28(4-8), 185–204 (1998)

    Article  MATH  Google Scholar 

  27. Currey J.D.: The effect of porosity and mineral content on the Young’s modulus of elasticity of compact bone. J. Biomech. 21, 131–139 (1988)

    Article  Google Scholar 

  28. dell’Isola F., Madeo A., Placidi L.: Linear plane wave propagation and normal transmission and reflection at discontinuity surfaces in second gradient 3D continua. ZAMM Zeitschrift für Angewandte Mathematik und Mechanik 92(1), 52–71 (2011)

    Article  MathSciNet  Google Scholar 

  29. dell’Isola F., Madeo A., Seppecher P.: Boundary conditions at fluid-permeable interfaces in porous media: A variational approach. Int. J. Solids Struct. 46(17), 3150–3164 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  30. dell’Isola F., Batra R.: Saint-Venant’s problem for porous linear elastic materials. J. Elast. 47, 73–81 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  31. dell’Isola F., Woźniak C.: On continuum modelling the interphase layers in certain two-phase elastic solids. ZAMM Zeitschrift für Angewandte Mathematik und Mechanik 77(7), 519–526 (1997)

    Article  MATH  Google Scholar 

  32. dell’Isola F., Woźniak C.: On phase transition layers in certain micro-damaged two-phase solids. Int. J. Fract. 83(2), 175–189 (1997)

    Article  Google Scholar 

  33. dell’Isola F., Rosa L., Woźniak C.: Dynamics of solids with micro periodic nonconnected fluid inclusions. Arch. Appl. Mech. 67(4), 215–228 (1997)

    MATH  Google Scholar 

  34. dell’Isola F., Guarascio M., Hutter K.: A variational approach for the deformation of a saturated porous solid. A second gradient theory extending Terzaghi’s effective stress principle. Arch. Appl. Mech. 70, 323–337 (2000)

    Article  MATH  Google Scholar 

  35. dell’Isola, F., Hutter, K.:What are the dominant thermomechanical processes in the basal sediment layer of large ice sheets? Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 454(1972), 1169–1195 (1998)

  36. dell’Isola F., Vidoli S.: Continuum modelling of piezoelectromechanical truss beams: An application to vibration damping. Arch. Appl. Mech. 68, 1–19 (1998)

    Article  MATH  Google Scholar 

  37. dell’Isola F., Vidoli S.: Damping of bending waves in truss beams by electrical transmission lines with PZT actuators. Arch. Appl. Mech. 68, 626–636 (1998)

    Article  MATH  Google Scholar 

  38. dell’Isola F., Rosa L., Woźniak C.: A micro-structured continuum modelling compacting fluid-saturated grounds: The effects of pore-size scale parameter. Acta Mech. 127(1-4), 165–182 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  39. dell’Isola F., Romano A.: A phenomenological approach to phase transition in classical field theory. Int. J. Eng. Sci. 25(11-12), 1469–1475 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  40. dell’Isola F., Romano A.: On the derivation of thermomechanical balance equations for continuous systems with a nonmaterial interface. Int. J. Eng. Sci. 25(11-12), 1459–1468 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  41. DiCarlo A., Quiligotti S.: Growth and balance. Mech. Res. Commun. 29, 449–456 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  42. Epstein M., Maugin G.A.: Thermomechanics of volumetric growth in uniform bodies. Int. J. Plast. 16, 951–978 (2000)

    Article  MATH  Google Scholar 

  43. Eremeyev V.A., Pietraszkiewicz W.: Thermomechanics of shells undergoing phase transition. J. Mech. Phys. Solids 59(7), 1395–1412 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  44. Eremeyev V.A., Pietraszkiewicz W.: Phase transitions in thermoelastic and thermoviscoelastic shells. Arch. Mech. 61(1), 41–67 (2009)

    MATH  MathSciNet  Google Scholar 

  45. Eremeyev V.A., Pietraszkiewicz W.: The nonlinear theory of elastic shells with phase transitions. J. Elast. 74(1), 67–86 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  46. Eremeev V.A., Freidin A.B., Sharipova L.L.: Nonuniqueness and stability in problems of equilibrium of elastic two-phase bodies. Doklady Phys. 48(7), 359–363 (2003)

    Article  MathSciNet  Google Scholar 

  47. Eshelby J.D.: The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc. R. Soc. Lond. A 241, 376–396 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  48. Federico S.: On the linear elasticity of porous materials. Int. J. Mech. Sci. 52(2), 175–182 (2010). doi:10.1016/j.ijmecsci.2009.09.006

    Article  MathSciNet  Google Scholar 

  49. Garusi E., Tralli A., Cazzani A.: An unsymmetric stress formulation for reissner-mindlin plates: A simple and locking-free rectangular element. Int. J. Comput. Eng. Sci. 5(3), 589–618 (2004)

    Article  Google Scholar 

  50. Ghiba, I.D., Neff, P., Madeo, A., Placidi, L., Rosi, G.: The relaxed linear micromorphic continuum: Existence, uniqueness and continuousdependence in dynamics. arXiv:1308.3762 submitted to Math.Mech. Solids

  51. Giorgio I., Culla A., Del Vescovo D.: Multimode vibration control using several piezoelectric transducers shunted with a multiterminal network. Arch. Appl. Mech. 79, 859–879 (2009)

    Article  MATH  Google Scholar 

  52. Goodman M.A., Cowin S.C.: A continuum theory for granular materials. Arch. Ration. Mech. An. 44, 249–266 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  53. Grillo A., Federico S., Wittum G.: Growth, mass transfer, and remodeling in fiber-reinforced, multi-constituent materials. Int. J. Non-Linear Mech. 47, 388–401 (2012)

    Article  Google Scholar 

  54. Hillsley M.V., Frangos J.A.: Review: Bone tissue engineering: The role of interstitial fluid flow. Biotechnol. Bioeng. 43(7), 573–581 (1994)

    Article  Google Scholar 

  55. Huiskes R., Weinans H., Grootenboer H.J., Dalstra M., Fudala B., Slooff T.J.: Adaptive bone-remodeling theory applied to prosthetic-design analysis. J. Biomech. 20, 1135–1150 (1987)

    Article  Google Scholar 

  56. Klein-Nulend J., Nijweide P.J., Burger E.H.: Osteocyte and bone structure. Curr. Osteoporos. Rep. 1, 5–10 (2003)

    Article  Google Scholar 

  57. Koç I.M., Carcaterra A., Xu Z., Akay A.: Energy sinks: Vibration absorption by an optimal set of undamped oscillators. J. Acoust. Soc. Am. 118(5), 3031–3042 (2005)

    Article  Google Scholar 

  58. Lekszycki T.: Modelling of bone adaptation based on an optimal response hypothesis. Meccanica 37, 343–354 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  59. Lekszycki T., dell’Isola F.: A mixture model with evolving mass densities for describing synthesis and resorption phenomena in bones reconstructed with bio-resorbable materials. J. Appl. Math Mech. (ZAMM) 92, 426–444 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  60. Luongo A., Di Egidio A., Paolone A.: Multiscale analysis of defective multiple-Hopf bifurcations. Comput. Struct. 82(31-32), 2705–2722 (2004)

    Article  MathSciNet  Google Scholar 

  61. Luongo A., Paolone A., Di Egidio A.: Multiple timescales analysis for 1:2 and 1:3 resonant Hopf bifurcations. Nonlinear Dyn. 34(3-4), 269–291 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  62. Luongo A., Paolone A.: On the reconstruction problem in the multiple time-scale method. Nonlinear Dyn. 19(2), 133–156 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  63. Luongo A., Paolone A.: Perturbation methods for bifurcation analysis from multiple nonresonant complex eigenvalues. Nonlinear Dyn. 14(3), 193–210 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  64. Luongo A.: Perturbation methods for nonlinear autonomous discrete-time dynamical systems. Nonlinear Dyn. 10(4), 317–331 (1996)

    Article  MathSciNet  Google Scholar 

  65. Madeo, A., Neff, P.,Ghiba, I.D., Placidi, L., Rosi, G.: Wave propagation in relaxed micromorphic continua: modeling metamaterials with frequency band-gaps.Continuum Mechanics and Thermodynamics. doi:10.1007/s00161-013-0329-2:1-20 (2013)

  66. Madeo A., dell’Isola F., Darve F.: A continuum model for deformable, second gradient porous media partially saturated with compressible fluids. J. Mech. Phys. Solids 61(11), 2196–2211 (2013)

    Article  MathSciNet  Google Scholar 

  67. Madeo, A., Djeran-Maigre, I., Rosi, G., Silvani, C.: The effect of fluid streams in porous media on acoustic compression wave propagation, transmission, and reflection. Continuum Mech. Therm. 25(2–4), 173–196 (2013)

    Google Scholar 

  68. Madeo A., George D., Lekszycki T., Nierenberger M., Rémond Y.: A second gradient continuum model accounting for some effects of micro-structure on reconstructed bone remodeling. Comptes Rendus Mécanique 340, 575–589 (2012)

    Article  Google Scholar 

  69. Madeo A., Lekszycki T., dell’Isola F.: A continuum model for the bio-mechanical interactions between living tissue and bio-resorbable graft after bone reconstructive surgery. Comptes Rendus Mécanique 339, 625–640 (2011)

    Article  Google Scholar 

  70. Madeo A., dell’Isola F., Ianiro N., Sciarra G.: A variational deduction of second gradient poroelasticity II: An application to the consolidation problem. J. Mech. Mater. Struct. 3(4), 607–625 (2008)

    Article  Google Scholar 

  71. Martin R.B.: Porosity and Specific Surface of Bone, CRC Critical reviews in Biomedical Engineering, pp. 179–222. CRC Press, Boca Raton FL (1984)

    Google Scholar 

  72. Maurini C., dell’Isola F., Del Vescovo D.: Comparison of piezoelectronic networks acting as distributed vibration absorbers. Mech. Syst. Signal Process. 18, 1243–1271 (2004)

    Article  Google Scholar 

  73. Maurini C., Pouget J., dell’Isola F.: On a model of layered piezoelectric beams including transverse stress effect. Int. J. Solids Struct. 41, 4473–4502 (2004)

    Article  MATH  Google Scholar 

  74. Maurini C., Pouget J., dell’Isola F.: Extension of the Euler-Bernoulli model of piezoelectric laminates to include 3D effects via a mixed approach. Comput. Struct. 84, 1438–1458 (2006)

    Article  Google Scholar 

  75. Neff, P., Ghiba, I.D., Madeo, A., Placidi, L., Rosi, G.: A unifying perspective: The relaxed linear micromorphic continuum. Contin. Mech. and Thermodyn.. doi:10.1007/s00161-013-0322-9 (2013)

  76. Neff P., Forest S.: A geometrically exact micromorphic model for elastic metallic foams accounting for affine microstructure. Modelling, existence of minimizers, identification of moduli and computational results. J. Elast. 87, 239–276 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  77. Neff P.: The Cosserat couple modulus for continuous solids is zero viz the linearized Cauchy-stress tensor is symmetric. Z. Angew. Math. Mech. 86, 892–912 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  78. Oliveto G., Cuomo M.: Incremental analysis of plane frames with geometric and material nonlinearities. Eng. Struct. 10(1), 2–12 (1988)

    Article  Google Scholar 

  79. Petite H., Viateau V., Bensaïd W., Meunier A., de Pollak C., Bourguignon M., Oudina K., Sedel L., Guillemin G.: Tissue-engineered bone regeneration. Nat. Biotechnol. 18, 959–963 (2000)

    Article  Google Scholar 

  80. Pietraszkiewicz W., Eremeyev V., Konopińska V.: Extended non-linear relations of elastic shells undergoing phase transitions. ZAMM Zeitschrift für Angewandte Mathematik und Mechanik 87(2), 150–159 (2007)

    Article  MATH  Google Scholar 

  81. Placidi L., dell’Isola F., Ianiro N., Sciarra G.: Variational formulation of pre-stressed solid-fluid mixture theory, with an application to wave phenomena. Eur. J. Mech. A/Solids 27, 582–606 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  82. Quiligotti S., Maugin G.A., dell’Isola F.: An Eshelbian approach to the nonlinear mechanics of constrained solid-fluid mixtures. Acta Mech. 160, 45–60 (2003)

    Article  MATH  Google Scholar 

  83. Ramaswamy Y., Haynes D.R., Berger G., Gildenhaar R., Lucas H.: Bioceramics composition modulate resorption of human osteoclasts. J. Mater. Sci. Mater. Med. 16, 1199–1205 (2005)

    Article  Google Scholar 

  84. Reccia E., Cazzani A., Cecchi A.: FEM-DEM Modeling for Out-of-plane loaded masonry panels: A limit analysis approach. Open Civil Eng. J. 6(1), 231–238 (2012)

    Article  Google Scholar 

  85. Rinaldi, A., Placidi, L.: A microscale second gradient approximation of the damage parameter of quasi-brittle heterogeneous lattices. (2013) doi:10.1002/zamm.201300028

  86. Rinaldi A.: A rational model for 2D disordered lattices under uniaxial loading. Int. J. Damage Mech. 18, 233–257 (2009)

    Article  Google Scholar 

  87. Rinaldi A., Lai Y.-C.: Statistical damage theory of 2d lattices: Energetics and physical foundations of damage parameter. Int. J. Plast. 23, 1796–1825 (2007)

    Article  MATH  Google Scholar 

  88. Rosi, G., Paccapeli, R., Ollivier, F., Pouget, J.: Optimization of piezoelectric patches positioning for passive sound radiation control of plates. J. Vib. Control 19(5), 658–673 (2013)

    Google Scholar 

  89. Rosi G., Pouget J., dell’Isola F.: Control of sound radiation and transmission by a piezoelectric plate with an optimized resistive electrode. Eur. J. Mech. A-Solids 29, 859–870 (2010)

    Article  MathSciNet  Google Scholar 

  90. Rubin C.T., Lanyon L.E.: Osteoregulatory nature of mechanical stimuli: Function as a determinant for adaptive remodeling in bone. J. Orthopaed. Res. 5, 300–310 (1987)

    Article  Google Scholar 

  91. Sanz-Herrera J.A., García-Aznar J.M., Doblaré M.: Micro-macro numerical modelling of bone regeneration in tissue engineering. Comput. Methods Appl. Mech. Eng. 197, 3092–3107 (2008)

    Article  MATH  Google Scholar 

  92. Sanz-Herrera J.A., Boccaccini A.R.: Modelling bioactivity and degradation of bioactive glass based tissue engineering scaffolds. Int. J. Solids Struct. 48, 257–268 (2010)

    Article  Google Scholar 

  93. Schilling A.F., Linhart W., Filke S., Gebauer M., Schinke T., Rueger J.M., Amling M.: Resorbability of bone substitute biomaterials by human osteoclasts. Biomaterials 25, 3963–3972 (2004)

    Article  Google Scholar 

  94. Sciarra G., dell’Isola F., Hutter K.: A solid-fluid mixture model allowing for solid dilatation under external pressure. Continuum Mech. Thermodyn. 13, 287–306 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  95. Sethuraman S., Nair L.S., El-Amin S., Nguyen M.T., Singh A., Krogman N., Greish Y.E., Allcock H.R., Brown P.W., Laurencin C.T.: Mechanical properties and osteocompatibility of novel biodegradable alanine based polyphosphazenes: Side group effects. Acta Biomater. 6, 1931–1937 (2010)

    Article  Google Scholar 

  96. Tricoteaux A., Rguiti E., Chicot D., Boilet L., Descamps M., Leriche A., Lesage J.: Influence of porosity on the mechanical properties of microporous β-TCP bioceramics by usual and instrumented Vickers microindentation. J. Eur. Ceram. Soc. 31, 1361–1369 (2011)

    Article  Google Scholar 

  97. Yeremeyev V.A., Freidin A.B., Sharipova L.L.: The stability of the equilibrium of two-phase elastic solids. J. Appl. Math. Mech. 71(1), 61–84 (2007)

    Article  MathSciNet  Google Scholar 

  98. Yusop, A.H., Bakir, A.A., Shaharom, N.A., Abdul Kadir, M.R., Hermawan, H.: Porous biodegradable metals for hard tissue scaffolds: A review. Int. J. Biomater. (2012), 1–10, Article ID 641430

  99. Zanetta M., Quirici N., Demarosi F., Tanzi M.C., Rimondini L., Farè S.: Ability of polyurethane foams to support cell proliferation and the differentiation of MSCs into osteoblasts. Acta Biomater. 5, 1126–1136 (2009)

    Article  Google Scholar 

  100. Zhou H., Lawrence J.G., Bhaduri S.B.: Fabrication aspects of PLA-CaP/PLGA-CaP composites for orthopedic applications: A review. Acta Biomater. 8, 1999–2016 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Giorgio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andreaus, U., Giorgio, I. & Madeo, A. Modeling of the interaction between bone tissue and resorbable biomaterial as linear elastic materials with voids. Z. Angew. Math. Phys. 66, 209–237 (2015). https://doi.org/10.1007/s00033-014-0403-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-014-0403-z

Mathematics Subject Classification (2010)

Keywords

Navigation